login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203469
a(n) = v(n)/A000178(n), v = A093883 and A000178 = (superfactorials).
3
1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{i=1..n} binomial(2n-i,i). - Enrique Pérez Herrero, Feb 20 2013
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = (2^n/sqrt(Pi))^n*BarnesG(n+3/2)/(BarnesG(n+2)*BarnesG(3/2)).
a(n) = (n!/2^(n-1))*Product_{j=1..n-1} Catalan(j). (End)
a(n) ~ A^(3/2) * exp(n/2 - 1/8) * 2^(n^2 - 7/24) / (Pi^(n/2 + 1/2) * n^(n/2 + 3/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 26 2023
MATHEMATICA
(* First program *)
f[j_]:= j; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A093883 *)
Table[v[n+1]/v[n], {n, z-1}] (* A006963 *)
Table[v[n]/d[n], {n, 20}] (* A203469 *)
(* Second program *)
Table[Product[Binomial[2*n-j, j], {j, n}], {n, 20}] (* G. C. Greubel, Aug 29 2023 *)
PROG
(Magma) [(&*[Binomial(2*n-k, k): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
(SageMath) [product(binomial(2*n-j, j) for j in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved