OFFSET
0,5
COMMENTS
The characteristic polynomial of M_n seems to be p(n,x) = (-1)^n * sum_{i=0..n} (-x)^i * binomial(2n-i, i). - Enrique Pérez Herrero, Jan 29 2013
LINKS
Alois P. Heinz, Rows n = 0..140, flattened (rows 0..60 from Enrique Pérez Herrero)
J. L. Jacobsen, and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760, arXiv:cond-mat/0407444. See Eq. 2.27. - N. J. A. Sloane, Mar 14 2014
EXAMPLE
Triangle begins:
1;
-1, 1;
1, -3, 1;
-1, 5, -6, 1;
1, -7, 15, -10, 1;
-1, 9, -28, 35, -15, 1;
1, -11, 45, -84, 70, -21, 1;
-1, 13, -66, 165, -210, 126, -28, 1;
MAPLE
T:=(n, k)-> binomial(2*n-k, k)*(-1)^(n+k):
seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, Feb 01 2013
MATHEMATICA
T[n_, k_] := Binomial[2*n - k, k]*(-1)^(n + k); Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 12 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Benoit Cloitre, Nov 09 2002
EXTENSIONS
Offset corrected by Alois P. Heinz, Feb 01 2013
STATUS
approved