login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076756 Triangle of coefficients of characteristic polynomial of M_n, the n X n matrix M_(i,j) = min(i,j). 7
1, -1, 1, 1, -3, 1, -1, 5, -6, 1, 1, -7, 15, -10, 1, -1, 9, -28, 35, -15, 1, 1, -11, 45, -84, 70, -21, 1, -1, 13, -66, 165, -210, 126, -28, 1, 1, -15, 91, -286, 495, -462, 210, -36, 1, -1, 17, -120, 455, -1001, 1287, -924, 330, -45, 1, 1, -19, 153, -680, 1820, -3003, 3003, -1716, 495, -55, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The characteristic polynomial of M_n seems to be p(n,x) = (-1)^n * sum_{i=0..n} (-x)^i * binomial(2n-i, i). - Enrique Pérez Herrero, Jan 29 2013

LINKS

Enrique Pérez Herrero and Alois P. Heinz, Rows n = 0..140, flattened (rows 0..60 from Enrique Pérez Herrero)

J. L. Jacobsen, and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760, arXiv:cond-mat/0407444. See Eq. 2.27. - N. J. A. Sloane, Mar 14 2014

EXAMPLE

Triangle begins:

   1;

  -1,   1;

   1,  -3,   1;

  -1,   5,  -6,   1;

   1,  -7,  15, -10,    1;

  -1,   9, -28,  35,  -15,   1;

   1, -11,  45, -84,   70, -21,   1;

  -1,  13, -66, 165, -210, 126, -28,  1;

MAPLE

T:=(n, k)-> binomial(2*n-k, k)*(-1)^(n+k):

seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Feb 01 2013

MATHEMATICA

T[n_, k_] := Binomial[2*n - k, k]*(-1)^(n + k); Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 12 2015, after Alois P. Heinz *)

CROSSREFS

Absolute values are A054142.

Cf. A203989.

Sequence in context: A145033 A202672 A054142 * A114172 A271942 A121522

Adjacent sequences:  A076753 A076754 A076755 * A076757 A076758 A076759

KEYWORD

sign,tabl

AUTHOR

Benoit Cloitre, Nov 09 2002

EXTENSIONS

Offset corrected by Alois P. Heinz, Feb 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 18:03 EST 2019. Contains 329809 sequences. (Running on oeis4.)