The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114172 Triangle, read by rows, where the g.f. of column n, C_n(x), equals the g.f. of row n, R_n(x), divided by (1-x)^(n+1), for n>=0; e.g., C_n(x) = R_n(x)/(1-x)^(n+1). 4
 1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 16, 9, 1, 1, 9, 31, 36, 12, 1, 1, 11, 51, 95, 66, 15, 1, 1, 13, 76, 199, 229, 106, 18, 1, 1, 15, 106, 361, 601, 467, 156, 21, 1, 1, 17, 141, 594, 1316, 1509, 844, 216, 24, 1, 1, 19, 181, 911, 2542, 3951, 3293, 1395, 286, 27, 1, 1, 21, 226 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS EXAMPLE Triangle begins: 1; 1,1; 1,3,1; 1,5,6,1; 1,7,16,9,1; 1,9,31,36,12,1; 1,11,51,95,66,15,1; 1,13,76,199,229,106,18,1; 1,15,106,361,601,467,156,21,1; 1,17,141,594,1316,1509,844,216,24,1; 1,19,181,911,2542,3951,3293,1395,286,27,1; 1,21,226,1325,4481,8910,10193,6447,2155,366,30,1; ... Where g.f. for columns is formed from g.f. of rows: GF(column 2) = (1 + 3*x + 1*x^2)/(1-x)^3 = 1 + 6*x + 16*x^2 + 31*x^3 + 51*x^4 + 76*x^5 +... GF(column 3) = (1 + 5*x + 6*x^2 + 1*x^3)/(1-x)^4 = 1 + 9*x + 36*x^2 + 95*x^3 + 199*x^4 + 361*x^5 +... GF(column 4) = (1 + 7*x + 16*x^2 + 9*x^3 + 1*x^4)/(1-x)^5 = 1 + 12*x + 66*x^2 + 229*x^3 + 601*x^4 + 1316*x^5 +... PROG (PARI) {T(n, k)=if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 04:47 EDT 2022. Contains 356204 sequences. (Running on oeis4.)