OFFSET
1,5
COMMENTS
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.=G(t,z)=tz(1-tz^2)(1-2tz^2-tz^3)/(1-z-tz-4tz^2+2tz^3+2t^2*z^3+6t^2*z^4-t^3*z^6).
EXAMPLE
T(4,2)=5 because we have (U)D(U)UDUDD, (U)UDD(U)UDD, (U)UDU(U)DDD, (U)U(U)DDUDD and (U)U(U)UDDDD, where U=(1,1) and D=(1,-1) (the up steps starting at an even level are shown between parentheses; UUDUDDUD does not qualify because it is not nondecreasing).
Triangle starts:
1;
1,1;
1,3,1;
1,5,6,1;
1,8,15,9,1;
1,11,30,34,12,1;
MAPLE
g:=t*z*(1-t*z^2)*(1-2*t*z^2-t*z^3)/(1-z-t*z-4*t*z^2+2*t*z^3+2*t^2*z^3+6*t^2*z^4-t^3*z^6): gser:=simplify(series(g, z=0, 17)): for n from 1 to 12 do P[n]:=sort(expand(coeff(gser, z, n))) od: for n from 1 to 12 do seq(coeff(P[n], t, j), j=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 05 2006
STATUS
approved