OFFSET
1,5
COMMENTS
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.: G(t,z) = z(1-tz^2)(1-2tz^2-t^2*z^3)/(1 - z - tz - 4tz^2 + 2tz^3 + 2t^2*z^3 + 6t^2*z^4 - t^3*z^6).
EXAMPLE
T(4,2)=5 because we have UDU(U)D(U)DD, U(U)DDU(U)DD, U(U)D(U)UDDD, U(U)UDD(U)DD and U(U)U(U)DDDD, where U=(1,1) and D=(1,-1) (the up steps starting at an odd level are shown between parentheses; UUDUDDUD does not qualify because it is not nondecreasing).
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 6, 5, 1;
1, 9, 15, 8, 1;
1, 12, 34, 30, 11, 1;
MAPLE
g:=z*(1-t*z^2)*(1-2*t*z^2-t^2*z^3)/(1-z-t*z-4*t*z^2+2*t*z^3+2*t^2*z^3+6*t^2*z^4-t^3*z^6): gser:=simplify(series(g, z=0, 17)): for n from 1 to 12 do P[n]:=sort(expand(coeff(gser, z, n))) od: for n from 1 to 12 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form
MATHEMATICA
G[t_, z_] = z*(1 - t*z^2)*(1 - 2*t*z^2 - t^2*z^3)/(1 - z - t*z - 4*t*z^2 + 2*t*z^3 + 2*t^2*z^3 + 6*t^2*z^4 - t^3*z^6);
T[n_, k_] := SeriesCoefficient[G[t, z], {z, 0, n}, {t, 0, k}];
Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 15 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 05 2006
STATUS
approved