login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335256 Irregular triangle read by rows: row n gives the coefficients of the n-th complete exponential Bell polynomial B_n(x_1, x_2, ..., x_n) with monomials sorted into standard order. 0
1, 1, 1, 1, 3, 1, 1, 6, 4, 3, 1, 1, 10, 10, 15, 5, 10, 1, 1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1, 1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1, 1, 28, 56, 210, 70, 560, 420, 56, 420, 280, 840, 105, 28, 168, 280, 210, 280, 8, 28, 56, 35, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
"Standard order" means as produced by Maple's "sort" command.
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus, for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3.
The number of terms in the n-th row is A000041(n), while the sum of the terms is A000110(n).
The function Bell(n,k) in the PARI program below is a modification of a similar function in the PARI help files and uses the Faà di Bruno formula (cf. A036040).
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 134 and 307-310.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 2, Section 8 and table on page 49.
LINKS
E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
Peter Luschny, The Bell transform.
FORMULA
B_n(x[1], ..., x[n]) = Sum_{k=1..n} B_{n,k}(x[1], ..., x[n-k+1]), where B_{n,k} = B_{n,k}(x[1], ..., x[n-k+1]) are the partial exponential Bell polynomials that satisfy B_{n,1} = x[n] for n >= 1 and B_{n,k} = (1/k)*Sum_{m=k-1..n-1} binomial(n,m)*x[n-m]*B_{m,k-1} for n >= 2 and k = 2..n.
E.g.f.: Exp(Sum_{i >= 1} x_i*t^i/i!) = 1 + Sum_{n >= 1} B_n(x_1, x_2, ..., x_n))*t^n/n! [Comtet, p. 134, Eq. [3b]].
EXAMPLE
The first few complete exponential Bell polynomials are:
(1) x[1];
(2) x[1]^2 + x[2];
(3) x[1]^3 + 3*x[1]*x[2] + x[3];
(4) x[1]^4 + 6*x[1]^2*x[2] + 4*x[1]*x[3] + 3*x[2]^2 + x[4];
(5) x[1]^5 + 10*x[1]^3*x[2] + 10*x[1]^2*x[3] + 15*x[1]*x[2]^2 + 5*x[1]*x[4] + 10*x[2]*x[3] + x[5];
(6) x[1]^6 + 15*x[1]^4*x[2] + 20*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 15*x[1]^2*x[4] + 60*x[1]*x[2]*x[3] + 15*x[2]^3 + 6*x[1]*x[5] + 15*x[2]*x[4] + 10*x[3]^2 + x[6].
(7) x[1]^7 + 21*x[1]^5*x[2] + 35*x[1]^4*x[3] + 105*x[1]^3*x[2]^2 + 35*x[1]^3*x[4] + 210*x[1]^2*x[2]*x[3] + 105*x[1]*x[2]^3 + 21*x[1]^2*x[5] + 105*x[1]*x[2]*x[4] + 70*x[1]*x[3]^2 + 105*x[2]^2*x[3] + 7*x[1]*x[6] + 21*x[2]*x[5] + 35*x[3]*x[4] + x[7].
...
The first few rows of the triangle are
1;
1, 1;
1, 3, 1;
1, 6, 4, 3, 1;
1, 10, 10, 15, 5, 10, 1;
1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1;
1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1;
...
MAPLE
triangle := proc(numrows) local E, s, Q;
E := add(x[i]*t^i/i!, i=1..numrows);
s := series(exp(E), t, numrows+1);
Q := k -> sort(expand(k!*coeff(s, t, k)));
seq(print(coeffs(Q(k))), k=1..numrows) end:
triangle(8); # Peter Luschny, May 30 2020
MATHEMATICA
imax = 10;
polys = (CoefficientList[Exp[Sum[x[i]*t^i/i!, {i, 1, imax}]] + O[t]^imax // Normal, t]*Range[0, imax-1]!) // Rest;
Table[MonomialList[polys[[i]], Array[x, i], "DegreeLexicographic"] /. x[_] -> 1, {i, 1, imax-1}] // Flatten (* Jean-François Alcover, Jun 02 2024 *)
PROG
(PARI) /* It produces the partial exponential Bell polynomials in decreasing degree, but the monomials are not necessarily in standard order. */
Bell(n, k)= { my(x, v, dv, var = i->eval(Str("X", i))); v = vector(n, i, if (i==1, 'E, var(i-1))); dv = vector(n, i, if (i==1, 'X*var(1)*'E, var(i))); x = diffop('E, v, dv, n) / 'E; if (k < 0, subst(x, 'X, 1), polcoeff(x, k, 'X)); };
row(n) = for(k=1, n, print1("[", Bell(n, n+1-k), "]", ", "))
CROSSREFS
For different versions, see A178867 and A268441.
Sequence in context: A124802 A211350 A178867 * A102036 A121524 A361682
KEYWORD
nonn,tabf
AUTHOR
Petros Hadjicostas, May 28 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 27 02:41 EDT 2024. Contains 373723 sequences. (Running on oeis4.)