login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A335258
Denominators of expansion of arctanh(tan(x)) (odd powers only).
1
1, 3, 3, 315, 567, 155925, 93555, 638512875, 127702575, 1856156927625, 7795859096025, 49308808782358125, 56894779364259375, 1298054391195577640625, 95646113035463615625, 122529844256906551386796875, 47570410123269602303109375, 2405873491984360136479756640625
OFFSET
1,2
COMMENTS
The denominators of a series used by Johann Heinrich Lambert (1728-1777) in expressing the relationship between a circular sector and a hyperbolic sector.
Lambert gave a(1)-a(4).
REFERENCES
Johann Heinrich Lambert: ``Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques,'' Histoire de l'Académie Royale des Sciences et Belles-Lettres, 1761, volume XVII, Berlin, 1768, pp. 265-322.
EXAMPLE
arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ...
arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ...
MATHEMATICA
Denominator @ CoefficientList[ Series[ArcTanh[Tan[x]], {x, 0, 36}], x][[2 ;; -1 ;; 2]] (* Amiram Eldar, Jun 04 2020 *)
PROG
(PARI) my(x='x+O('x^40), v=Vec(atanh(tan(x)))); apply(denominator, vector(#v\2, k, v[2*k-1])) \\ Michel Marcus, Jun 05 2020
CROSSREFS
Cf. A335257.
Sequence in context: A007301 A009715 A344283 * A292163 A242886 A221947
KEYWORD
nonn
AUTHOR
Denis Roegel, May 28 2020
STATUS
approved