login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335260
Irregular triangle S(n,k) = numerators of k*A002110(n)/A005867(n) for 1 <= k <= A005867(n).
1
1, 2, 3, 6, 15, 15, 45, 15, 75, 45, 105, 30, 35, 35, 105, 35, 175, 105, 245, 35, 315, 175, 385, 105, 455, 245, 525, 70, 595, 315, 665, 175, 735, 385, 805, 105, 875, 455, 945, 245, 1015, 525, 1085, 140, 1155, 595, 1225, 315, 1295, 665, 1365, 175, 1435, 735, 1505
OFFSET
1,2
COMMENTS
Alternatively, numerators of k*A060753(n)/A038110(n) for 1 <= k <= A005867(n).
FORMULA
S(n,k) = k*A060753(n)/GCD(k (mod m), m) for m = A038110(n).
Row lengths: A005867(n).
Least numerator in row n: A060753(n), all numerators are multiples j*A060753(n).
EXAMPLE
Table begins:
1;
2;
3, 6;
15, 15, 45, 15, 75, 45, 105, 30;
...
Row n = 4 contains the numerators of (35/8)*k for 1 <= k <= A005867(4): 35/8, 35/4, 105/8, 35/2, 175/8, 105/4, 245/8, 35, 315/8, 175/4, 385/8, 105/2, 455/8, 245/4, 525/8, 70, 595/8, 315/4, 665/8, 175/2, 735/8, 385/4, 805/8, 105, 875/8, 455/4, 945/8, 245/2, 1015/8, 525/4, 1085/8, 140, 1155/8, 595/4, 1225/8, 315/2, 1295/8, 665/4, 1365/8, 175, 1435/8, 735/4, 1505/8, 385/2, 1575/8, 805/4, 1645/8, 210.
MATHEMATICA
Table[Numerator[P Range[EulerPhi[P]]/EulerPhi[P]], {P, FoldList[Times, Prime@ Range@ 5]}] (* or, more efficiently for larger datasets: *)
Flatten@ Block[{nn = 7, s, t}, s = Array[Numerator@ Product[1 - 1/Prime[k], {k, # - 1}] &, nn]; t = Nest[Append[#, #[[-1]] (Prime[Length@ #] - 1)]&, {1}, nn]; u = Denominator@ Nest[Append[#, #[[-1]] + (1 - #[[-1]])/Prime[Length@ #]] &, {0}, nn]; MapIndexed[Function[{m, D, i}, u[[i]]*Range[t[[i]]]/ PadRight[{}, t[[i]], ReplacePart[ConstantArray[0, m], Flatten@ Map[Function[d, Map[# -> m/d &, m/d Select[Range[d], GCD[#, d] == 1 &]]], D]]]] @@ {#1, Divisors@ #1, First[#2]} &, s]]
(* or, generate a single numerator of S(n, k): *)
f[n_, k_] := #2 k/GCD[#1, Mod[k, #1]] & @@ {Numerator@ Product[1 - 1/Prime[i], {i, n - 1}], Denominator@ Last@ Nest[Append[#, #[[-1]] + (1 - #[[-1]])/Prime[Length@ #]] &, {0}, n - 1]}
KEYWORD
nonn,frac,easy,tabf
AUTHOR
STATUS
approved