The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060753 Denominator of 1*2*4*6*...*(prime(n-1)-1) / (2*3*5*7*...*prime(n-1)). 23
 1, 2, 3, 15, 35, 77, 1001, 17017, 323323, 676039, 2800733, 86822723, 3212440751, 131710070791, 5663533044013, 11573306655157, 47183480978717, 95993978542907, 5855632691117327, 392327390304860909 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, numerator of Product_{k=1..n-1} prime(k)/(prime(k)-1) (cf. A038110). - N. J. A. Sloane, Apr 17 2015 a(n)/A038110(n) is the supremum of the abundancy index sigma(k)/k = A000203(k)/k of the prime(n-1)-smooth numbers, for n>1 (Laatsch, 1986). - Amiram Eldar, Oct 26 2021 From Amiram Eldar, Jul 10 2022: (Start) a(n)/A038110(n) is the sum of the reciprocals of the prime(n-1)-smooth numbers, for n>1. a(n)/A038110(n) is the asymptotic mean of the number of prime(n-1)-smooth divisors of the positive integers, for n>1 (cf. A001511, A072078, A355583). (End) REFERENCES G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 429. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..423 Frank Ellermann, Illustration for A002110, A005867, A038110, A060753. Richard Laatsch, Measuring the abundancy of integers, Mathematics Magazine, Vol. 59, No. 2 (1986), pp. 84-92. Jonathan Sondow and Eric Weisstein, Euler Product, MathWorld. FORMULA a(n) = A002110(n) / gcd( A005867(n), A002110(n) ). A038110(n) / a(n) ~ exp( -gamma ) / log( prime(n) ), Mertens's theorem for x = prime(n) = A000040(n). A038110(n) / a(n) = A005867(n) / A002110(n). - corrected by Simon Tatham, Jul 26 2016 a(n) = A038111(n) / prime(n). - Vladimir Shevelev, Jan 10 2014 a(n) = A038110(n) + A161527(n-1). - Jamie Morken, Jun 19 2019 EXAMPLE A038110(50)/ a(50) = 0.1020..., exp(-gamma)/log(229) = 0.1033... 1*2*4/(2*3*5) = 4/15 has denominator a(4) = 15. - Jonathan Sondow, Jan 31 2014 MATHEMATICA Table[Denominator@ Product[EulerPhi@ Prime[i]/Prime@ i, {i, n}], {n, 0, 19}] (* Michael De Vlieger, Jan 10 2015 *) {1}~Join~Denominator@ FoldList[Times, Table[EulerPhi@ Prime[n]/Prime@ n, {n, 19}]] (* Michael De Vlieger, Jul 26 2016 *) b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n] Denominator@ Table[b[n], {n, 0, 20}] (* Fred Daniel Kline, Jun 27 2017 *) Join[{1}, Denominator[With[{nn=20}, FoldList[Times, Prime[Range[nn]]-1]/FoldList[ Times, Prime[Range[nn]]]]]] (* Harvey P. Dale, Apr 17 2022 *) PROG (Magma) [1] cat [Denominator((&*[NthPrime(k-1)-1:k in [2..n]])/(&*[NthPrime(k-1):k in [2..n]])):n in [2..20]]; // Marius A. Burtea, Sep 19 2019 CROSSREFS Cf. A000203, A002110, A005867, A038110, A038111. Cf. A236435, A236436. Cf. A001511, A072078, A355583. Sequence in context: A244377 A244330 A342867 * A241198 A356094 A296296 Adjacent sequences: A060750 A060751 A060752 * A060754 A060755 A060756 KEYWORD nonn,frac AUTHOR Frank Ellermann, Apr 23 2001 EXTENSIONS Definition corrected by Jonathan Sondow, Jan 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 12:33 EST 2023. Contains 367562 sequences. (Running on oeis4.)