login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236436
Denominator of product_{k=1..n-1} (1 + 1/prime(k)).
8
1, 2, 1, 5, 35, 385, 715, 12155, 46189, 1062347, 30808063, 955049953, 1859834119, 76253198879, 298080686527, 14009792266769, 742518990138757, 43808620418186663, 86204059532560853, 339745411098916303, 24121924188023057513, 47591904479072518877, 3759760453846728991283
OFFSET
1,2
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.
LINKS
J. Sondow and E. Weisstein, MathWorld: Mertens Theorem
FORMULA
A236435(n+1) / a(n+1) = A072045(n)/A072044(n) / A038110(n+1)/A060753(n+1) because 1+x = (1-x^2) / (1-x).
A236436(n) / a(n) = product_{k=1..n-1} (1 + 1/prime(k)) ~ (6/Pi^2)*exp(gamma)*log(n) as n -> infinity, by Mertens' theorem.
EXAMPLE
(1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has denominator a(5) = 35.
MATHEMATICA
Denominator@Table[Product[1 + 1/Prime[k], {k, 1, n - 1}], {n, 1, 23}]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jonathan Sondow, Feb 01 2014
STATUS
approved