login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236438
a(n) = n*a(n-1) + (-1)^n for n>0, a(0)=2.
2
2, 1, 3, 8, 33, 164, 985, 6894, 55153, 496376, 4963761, 54601370, 655216441, 8517813732, 119249392249, 1788740883734, 28619854139745, 486537520375664, 8757675366761953, 166395831968477106, 3327916639369542121, 69886249426760384540, 1537497487388728459881
OFFSET
0,1
LINKS
FORMULA
E.g.f.: (1 + exp(-x)) / (1 - x).
a(n) = A001120(n) unless n=0.
a(n) = A000166(n) + n!.
0 = a(n) * (a(n+1) + a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2) * (a(n+2)) if n>=0.
a(n) = Gamma(n+1) + Gamma(n+1, -1)*exp(-1). - Peter Luschny, Feb 28 2017
D-finite with recurrence a(n) +(-n+1)*a(n-1) +(-n+1)*a(n-2)=0. - R. J. Mathar, Sep 24 2021
EXAMPLE
G.f. = 2 + x + 3*x^2 + 8*x^3 + 33*x^4 + 164*x^5 + 985*x^6 + 6894*x^7 + ...
MAPLE
a := n -> GAMMA(n+1) + GAMMA(n+1, -1)*exp(-1):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Feb 28 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, n! + Subfactorial[n]]
a[ n_] := If[ n < 1, 2 Boole[n == 0], n! + Round[ n! / E]]
a[ n_] := If[ n < 0, 0, n! + (-1)^n HypergeometricPFQ[ { -n, 1}, {}, 1]]
a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ (1 + Exp[ -x]) / (1 - x), {x, 0, n}]]
PROG
(PARI) {a(n) = if( n<1, 2 * (n==0), n * a(n-1) + (-1)^n)}
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( (1 + exp(-x + x * O(x^n))) / (1 - x), n))}
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+Exp(-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 07 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 25 2014
STATUS
approved