login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086606
Triangle, read by rows, where the n-th row is the first n terms of the n-th self-convolution of the sequence formed by flattening this triangle.
3
1, 1, 2, 1, 3, 9, 1, 4, 14, 32, 1, 5, 20, 55, 140, 1, 6, 27, 86, 243, 630, 1, 7, 35, 126, 392, 1099, 2870, 1, 8, 44, 176, 598, 1808, 5048, 13256, 1, 9, 54, 237, 873, 2835, 8433, 23454, 61389, 1, 10, 65, 310, 1230, 4272, 13495, 39640, 109400, 286710, 1, 11, 77
OFFSET
0,3
LINKS
EXAMPLE
This triangle begins:
1;
1, 2;
1, 3, 9;
1, 4, 14, 32;
1, 5, 20, 55, 140;
1, 6, 27, 86, 243, 630;
1, 7, 35, 126, 392, 1099, 2870;
1, 8, 44, 176, 598, 1808, 5048, 13256; ...
The g.f. A(x) of this sequence as a flat list of coefficients begins:
A(x) = 1 + x + 2*x^2 + x^3 + 3*x^4 + 9*x^5 + x^6 + 4*x^7 + 14*x^8 + 32*x^9 + x^10 + 5*x^11 + 20*x^12 + 55*x^13 + 140*x^14 +...
such that the coefficients in A(x)^n, n>=1, forms the table:
A^1: [(1),1, 2, 1, 3, 9, 1, 4, 14, 32, ...];
A^2: [(1, 2), 5, 6, 12, 28, 33, 52, 67, 164, ...];
A^3: [(1, 3, 9), 16, 33, 72, 125, 222, 330, 646, ...];
A^4: [(1, 4, 14, 32), 73, 164, 334, 660, 1152, 2184, ...];
A^5: [(1, 5, 20, 55, 140), 336, 755, 1625, 3195, 6315, ...];
A^6: [(1, 6, 27, 86, 243, 630),1532, 3546, 7635, 16020, ...];
A^7: [(1, 7, 35, 126, 392, 1099, 2870), 7092, 16443, 36666, ...];
A^8: [(1, 8, 44, 176, 598, 1808, 5048, 13256),32761, 77384, ...];
A^9: [(1, 9, 54, 237, 873, 2835, 8433, 23454, 61389),153007, ...]; ...
where the lower triangular portion equals this sequence.
PROG
(PARI) /* As a flattened triangle: */
{a(n)=local(t=(sqrt(8*n+1)+1)\2, A=1+sum(k=1, min(n-1, t), a(k)*x^k)); if(n==0, 1, polcoeff((A+x*O(x^n))^t, n-t*(t-1)/2))}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Cf. A086607 (main diagonal), A086608 (row sums).
Sequence in context: A076655 A236438 A101486 * A076112 A208744 A122454
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 23 2003
STATUS
approved