login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208744
Triangle relating to ordered Bell numbers, A000670.
5
1, 1, 2, 1, 3, 9, 1, 4, 18, 52, 1, 5, 30, 130, 375, 1, 6, 45, 260, 1125, 3246, 1, 7, 63, 455, 2625, 11361, 32781, 1, 8, 84, 728, 5250, 30296, 131124, 378344, 1, 9, 108, 1092, 9450, 68166, 393372, 1702548, 4912515, 1, 10, 135, 1560, 15750, 136332, 983430, 5675160, 24562575, 70872610
OFFSET
1,3
COMMENTS
Row sums = A000670 starting (1, 3, 13, 75,...).
Right border = A052882 starting (1, 2, 9, 52, 375,...).
A000670 is the eigensequence of triangle A074909, deleting the first "1".
Triangle A074909 is the "beheaded" Pascal's triangle: (1; 1,2; 1,3,3;...).
FORMULA
As infinite lower triangular matrices, A074909 * A000670 as the main diagonal and the rest zeros.
E.g.f. (exp(x) - 1)/(2 - exp(x*t)) = x + (1 + 2*t)*x^2/2! + (1 + 3*t + 9*t^2)*x^3/3! + .... Cf. A154921. - Peter Bala, Aug 31 2016
EXAMPLE
Row 4 (nonzero terms) = (1, 4, 18, 52) = termwise product of (1, 4, 6, 4) and (1, 1, 3, 13).
First few rows of the triangle:
1;
1, 2;
1, 3, 9;
1, 4, 18, 52;
1, 5, 30, 130, 375;
1, 6, 45, 260, 1125, 3246;
1, 7, 63, 455, 2625, 11361, 32781;
1, 8, 84, 728, 5250, 30296, 131124, 378344;
...
MATHEMATICA
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i + k + r)*(i + r)^(n - r)/(i!*(k - i - r)!), {i, 0, k - r}], {k, r, n}]; Fubini[0, 1] = 1;
a[n_, k_] := Binomial[n, k] Fubini[k, 1];
Table[a[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Mar 30 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 05 2012
EXTENSIONS
a(36) corrected by Jean-François Alcover, Mar 30 2016
STATUS
approved