login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle relating to ordered Bell numbers, A000670.
5

%I #20 Aug 31 2016 05:46:11

%S 1,1,2,1,3,9,1,4,18,52,1,5,30,130,375,1,6,45,260,1125,3246,1,7,63,455,

%T 2625,11361,32781,1,8,84,728,5250,30296,131124,378344,1,9,108,1092,

%U 9450,68166,393372,1702548,4912515,1,10,135,1560,15750,136332,983430,5675160,24562575,70872610

%N Triangle relating to ordered Bell numbers, A000670.

%C Row sums = A000670 starting (1, 3, 13, 75,...).

%C Right border = A052882 starting (1, 2, 9, 52, 375,...).

%C A000670 is the eigensequence of triangle A074909, deleting the first "1".

%C Triangle A074909 is the "beheaded" Pascal's triangle: (1; 1,2; 1,3,3;...).

%F As infinite lower triangular matrices, A074909 * A000670 as the main diagonal and the rest zeros.

%F E.g.f. (exp(x) - 1)/(2 - exp(x*t)) = x + (1 + 2*t)*x^2/2! + (1 + 3*t + 9*t^2)*x^3/3! + .... Cf. A154921. - _Peter Bala_, Aug 31 2016

%e Row 4 (nonzero terms) = (1, 4, 18, 52) = termwise product of (1, 4, 6, 4) and (1, 1, 3, 13).

%e First few rows of the triangle:

%e 1;

%e 1, 2;

%e 1, 3, 9;

%e 1, 4, 18, 52;

%e 1, 5, 30, 130, 375;

%e 1, 6, 45, 260, 1125, 3246;

%e 1, 7, 63, 455, 2625, 11361, 32781;

%e 1, 8, 84, 728, 5250, 30296, 131124, 378344;

%e ...

%t Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i + k + r)*(i + r)^(n - r)/(i!*(k - i - r)!), {i, 0, k - r}], {k, r, n}]; Fubini[0, 1] = 1;

%t a[n_, k_] := Binomial[n, k] Fubini[k, 1];

%t Table[a[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* _Jean-François Alcover_, Mar 30 2016 *)

%Y Cf. A000670, A052882, A154921.

%K nonn,tabl

%O 1,3

%A _Gary W. Adamson_, Mar 05 2012

%E a(36) corrected by _Jean-François Alcover_, Mar 30 2016