OFFSET
1,1
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..300, flattened
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 64
FORMULA
O.g.f.: Product_{i>=1} (1 + y*x^i)^(2^i).
EXAMPLE
T(3,2) = 8 because we have: {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}; 2 word languages with total length 3.
Triangle T(n,k) begins:
2;
4, 1;
8, 8;
16, 22, 4;
32, 64, 20;
64, 156, 84, 6;
...
MAPLE
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(2^i, j)*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(h(n$2)):
seq(T(n), n=1..15); # Alois P. Heinz, Sep 24 2017
MATHEMATICA
nn=12; p=Product[(1+y x^i)^(2^i), {i, 1, nn}]; f[list_] := Select[list, #>0&]; Map[f, Drop[CoefficientList[Series[p[x, y], {x, 0, nn}], {x, y}], 1]]//Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 08 2012
STATUS
approved