OFFSET
0,5
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
FORMULA
T(n,k) = T(n,n-k).
Sum_{k=0..2n} (-1)^k*T(2n,k) = A200751(n). - Alois P. Heinz, Sep 09 2023
EXAMPLE
T(4,0) = 2: {bbbb}, {b,bbb}.
T(4,1) = 11: {abbb}, {babb}, {bbab}, {bbba}, {a,bbb}, {ab,bb}, {abb,b}, {b,bab}, {b,bba}, {ba,bb}, {a,b,bb}.
T(4,2) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
Triangle T(n,k) begins:
1;
1, 1;
1, 3, 1;
2, 6, 6, 2;
2, 11, 16, 11, 2;
3, 18, 37, 37, 18, 3;
4, 28, 73, 100, 73, 28, 4;
5, 42, 133, 228, 228, 133, 42, 5;
6, 61, 227, 470, 593, 470, 227, 61, 6;
8, 86, 370, 899, 1370, 1370, 899, 370, 86, 8;
10, 119, 580, 1617, 2894, 3497, 2894, 1617, 580, 119, 10;
...
MAPLE
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..15);
MATHEMATICA
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
T[n_] := CoefficientList[b[n, n], x];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 14 2023
STATUS
approved