login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360650
Number of sets of nonempty words over binary alphabet with a total of n letters of which 2 are the first letter.
2
0, 0, 1, 6, 16, 37, 73, 133, 227, 370, 580, 881, 1305, 1890, 2687, 3756, 5175, 7037, 9460, 12582, 16577, 21649, 28048, 36070, 46072, 58474, 73778, 92574, 115559, 143551, 177510, 218556, 267997, 327355, 398394, 483162, 584023, 703708, 845361, 1012600, 1209573
OFFSET
0,4
LINKS
FORMULA
a(n) = A360634(n,2).
EXAMPLE
a(2) = 1: {aa}.
a(3) = 6: {aab}, {aba}, {baa}, {a,ab}, {a,ba}, {aa,b}.
a(4) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
MAPLE
g:= proc(n, i, j) option remember; convert(series(`if`(j=0, 1,
`if`(i<0, 0, add(g(n, i-1, j-k)*x^(i*k)*binomial(
binomial(n, i), k), k=0..j))), x, 3), polynom)
end:
b:= proc(n, i) option remember; convert(series(`if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))), x, 3), polynom)
end:
a:= n-> coeff(b(n$2), x, 2):
seq(a(n), n=0..45);
CROSSREFS
Column k=2 of A360634.
Sequence in context: A237601 A372669 A064602 * A346375 A058272 A049712
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 15 2023
STATUS
approved