login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360647
Expansion of Sum_{k>=0} (k^2 * x * (1 + x))^k.
1
1, 1, 17, 761, 67739, 10029956, 2226004406, 691381685259, 286255287677425, 152360721379689043, 101358756787489940837, 82408168580060017122144, 80396790074312939684672316, 92691781529853274368541343021
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-k)^(2*(n-k)) * binomial(n-k,k).
a(n) ~ n^(2*n). - Vaclav Kotesovec, Feb 16 2023
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^(2*(n-k)), {k, 0, n/2}], {n, 1, 30}]}] (* Vaclav Kotesovec, Feb 16 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x*(1+x))^k))
(PARI) a(n) = sum(k=0, n\2, (n-k)^(2*(n-k))*binomial(n-k, k));
CROSSREFS
Sequence in context: A283579 A294757 A176233 * A355495 A368492 A012221
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 15 2023
STATUS
approved