Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 16 2023 09:46:44
%S 1,1,17,761,67739,10029956,2226004406,691381685259,286255287677425,
%T 152360721379689043,101358756787489940837,82408168580060017122144,
%U 80396790074312939684672316,92691781529853274368541343021
%N Expansion of Sum_{k>=0} (k^2 * x * (1 + x))^k.
%F a(n) = Sum_{k=0..floor(n/2)} (n-k)^(2*(n-k)) * binomial(n-k,k).
%F a(n) ~ n^(2*n). - _Vaclav Kotesovec_, Feb 16 2023
%t Flatten[{1, Table[Sum[Binomial[n-k,k] * (n-k)^(2*(n-k)), {k,0,n/2}], {n,1,30}]}] (* _Vaclav Kotesovec_, Feb 16 2023 *)
%o (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^2*x*(1+x))^k))
%o (PARI) a(n) = sum(k=0, n\2, (n-k)^(2*(n-k))*binomial(n-k, k));
%Y Cf. A323280, A360611.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Feb 15 2023