login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346375
a(n) = Sum_{k=0..n} (2^k + 2) * (2^k + 3) / 2.
2
6, 16, 37, 92, 263, 858, 3069, 11584, 44995, 177350, 704201, 2806476, 11205327, 44780242, 179038933, 715991768, 2863639259, 11453901534, 45814295265, 183254559460, 733012994791, 2932041493226, 11728145001197, 46912538061552, 187650068359923, 750600105667318, 3002400087124729
OFFSET
0,1
LINKS
Roger B. Nelson, Proof without Words: A Triangular Sum, Mathematics Magazine Vol. 78, No. 5 (December 2005), p. 395.
FORMULA
a(n) = Sum_{k=0..n} (2^k + 2) * (2^k + 3) / 2.
a(n) = (2^(n+1) + 7) * (2^(n+1) + 8)/6 - 9 + 3*n.
More generally: let f(n, b) = Sum_{k=0..n} (2^k + b) * (2^k + b + 1)/2 then f(n, b) = (2^(n+1) + 3*b + 1) * (2^(n+1) + 3*b + 2) / 6 - (b + 1)^2 + b*(b + 1)*n/2.
G.f.: ((b^2+3*b+2)/2 - (3*b^2+8*b+4)*x + (4*b^2+8*b+3)*x^2) / ((4*x-1) * (2*x-1) * (x-1)^2).
E.g.f.: exp(x)*((6*b+3)*exp(x) + 2*exp(3*x) + 3*(b^2+b)*x/2 +(3*b^2-3*b-4) / 2) / 3.
Then b = -1 gives A006095, b = 0 gives A076024, b = 1 gives A346295, b = 2 gives A346375.
a(n) = 8*a(n-1) - 21*a(n-2) + 22*a(n-3) - 8*a(n-4) with n > 3.
This recurrence is valid for all sequences f(n, b).
G.f.: (35*x^2 - 32*x + 6) / ((4*x - 1) * (2*x - 1) * (x - 1)^2).
E.g.f.: exp(x) * (1 + 15*exp(x) + 2*exp(3*x) + 9*x)/3. - Stefano Spezia, Aug 15 2021
MAPLE
a:= proc(n) option remember:
if n=0 then 6 else procname(n-1)+(2^n+3)*(2^n+2)/2 fi:
end proc:
seq(a(n), n=0..26);
MATHEMATICA
a[n_]:=Sum[(2^k+2)*(2^k+3)/2, {k, 0, n}]; Array[a, 30, 0] (* Giorgos Kalogeropoulos, Jul 27 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (2^k+2)*(2^k+3)/2); \\ Michel Marcus, Jul 28 2021
CROSSREFS
Sequence in context: A372669 A064602 A360650 * A058272 A049712 A092274
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Jul 14 2021
STATUS
approved