login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328641
Dirichlet g.f.: zeta(s)^2 / zeta(s-1)^2.
1
1, -2, -4, -1, -8, 8, -12, 0, 0, 16, -20, 4, -24, 24, 32, 1, -32, 0, -36, 8, 48, 40, -44, 0, 8, 48, 4, 12, -56, -64, -60, 2, 80, 64, 96, 0, -72, 72, 96, 0, -80, -96, -84, 20, 0, 88, -92, -4, 24, -16, 128, 24, -104, -8, 160, 0, 144, 112, -116, -32, -120, 120, 0, 3, 192
OFFSET
1,2
COMMENTS
Dirichlet inverse of A029935.
Dirichlet convolution of A023900 with itself.
Inverse Moebius transform of A101035.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A029935(n/d) * a(d).
a(n) = Sum_{d|n} A101035(d).
Multiplicative with a(p) = 2*(1-p), and a(p^e) = (p-1)*(e*p-p-e-1) for e > 1. - Amiram Eldar, Dec 03 2022
MATHEMATICA
a[1] = 1; a[n_] := -Sum[DirichletConvolve[EulerPhi[j], EulerPhi[j], j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 65}]
f[p_, e_] := If[e == 1, 2*(1 - p), (p - 1)*(e*p - p - e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv(n, d, eulerphi(d) * eulerphi(n/d))))} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 23 2019
STATUS
approved