login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328640
Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).
3
1, -9, -28, 9, -126, 252, -344, -9, 28, 1134, -1332, -252, -2198, 3096, 3528, 9, -4914, -252, -6860, -1134, 9632, 11988, -12168, 252, 126, 19782, -28, -3096, -24390, -31752, -29792, -9, 37296, 44226, 43344, 252, -50654, 61740, 61544, 1134, -68922, -86688, -79508, -11988, -3528
OFFSET
1,2
COMMENTS
Dirichlet inverse of A065959.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A065959(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^3, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^) = (-1)^e*(p^3+1). - Amiram Eldar, Dec 03 2022
MATHEMATICA
a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^3, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 45}]
Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^3 &], {n, 1, 45}]
f[p_, e_] := (-1)^e*(p^3+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
PROG
(PARI) a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^3)} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
Cf. A008683, A008836, A026424 (positions of negative terms), A063453, A065959, A323363, A328639.
Sequence in context: A075539 A225300 A053825 * A351266 A369721 A369759
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 23 2019
STATUS
approved