login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).
3

%I #12 Dec 03 2022 05:44:37

%S 1,-9,-28,9,-126,252,-344,-9,28,1134,-1332,-252,-2198,3096,3528,9,

%T -4914,-252,-6860,-1134,9632,11988,-12168,252,126,19782,-28,-3096,

%U -24390,-31752,-29792,-9,37296,44226,43344,252,-50654,61740,61544,1134,-68922,-86688,-79508,-11988,-3528

%N Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).

%C Dirichlet inverse of A065959.

%H Amiram Eldar, <a href="/A328640/b328640.txt">Table of n, a(n) for n = 1..10000</a>

%F a(1) = 1; a(n) = -Sum_{d|n, d<n} A065959(n/d) * a(d).

%F a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^3, where lambda = A008836 and mu = A008683.

%F Multiplicative with a(p^) = (-1)^e*(p^3+1). - _Amiram Eldar_, Dec 03 2022

%t a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^3, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 45}]

%t Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^3 &], {n, 1, 45}]

%t f[p_, e_] := (-1)^e*(p^3+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 03 2022 *)

%o (PARI) a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^3)} \\ _Andrew Howroyd_, Oct 25 2019

%Y Cf. A008683, A008836, A026424 (positions of negative terms), A063453, A065959, A323363, A328639.

%K sign,mult

%O 1,2

%A _Ilya Gutkovskiy_, Oct 23 2019