login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023900
Dirichlet inverse of Euler totient function (A000010).
161
1, -1, -2, -1, -4, 2, -6, -1, -2, 4, -10, 2, -12, 6, 8, -1, -16, 2, -18, 4, 12, 10, -22, 2, -4, 12, -2, 6, -28, -8, -30, -1, 20, 16, 24, 2, -36, 18, 24, 4, -40, -12, -42, 10, 8, 22, -46, 2, -6, 4, 32, 12, -52, 2, 40, 6, 36, 28, -58, -8, -60, 30, 12, -1, 48, -20, -66, 16, 44, -24, -70, 2, -72, 36, 8, 18, 60, -24, -78, 4, -2
OFFSET
1,3
COMMENTS
Also called reciprocity balance of n.
Apart from different signs, same as Sum_{d divides n} core(d)*mu(n/d), where core(d) (A007913) is the squarefree part of d. - Benoit Cloitre, Apr 06 2002
Main diagonal of A191898. - Mats Granvik, Jun 19 2011
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 125.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
G. P. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (516) (2005) 403-408.
K. Dohmen and M. Trinks, An Abstraction of Whitney's Broken Circuit Theorem, arXiv preprint arXiv:1404.5480 [math.CO], 2014.
R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234.
László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv preprint arXiv:1310.7053 [math.NT], 2013.
FORMULA
a(n) = Sum_{ d divides n } d*mu(d) = Product_{p|n} (1-p).
a(n) = 1 / (Sum_{ d divides n } mu(d)*d/phi(d)).
Dirichlet g.f.: zeta(s)/zeta(s-1). - Michael Somos, Jun 04 2000
a(n+1) = det(n+1)/det(n) where det(n) is the determinant of the n X n matrix M_(i, j) = i/gcd(i, j) = lcm(i, j)/j. - Benoit Cloitre, Aug 19 2003
a(n) = phi(n)*moebius(A007947(n))*A007947(n)/n. Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = log(F(x)) where F(x) is the g.f. of A117209 and satisfies: 1/(1-x) = Product_{n >= 1} F(x^n). - Paul D. Hanna, Mar 03 2006
G.f.: A(x) = Sum_{k >= 1} mu(k) k x^k/(1 - x^k) where mu(k) is the Moebius (Mobius) function, A008683. - Stuart Clary, Apr 15 2006
G.f.: A(x) is x times the logarithmic derivative of A117209(x). - Stuart Clary, Apr 15 2006
Row sums of triangle A134842. - Gary W. Adamson, Nov 12 2007
G.f.: x/(1-x) = Sum_{n >= 1} a(n)*x^n/(1-x^n)^2. - Paul D. Hanna, Aug 16 2008
a(n) = phi(rad(n)) *(-1)^omega(n) = A000010(A007947(n)) *(-1)^A001221(n). - Enrique Pérez Herrero, Aug 24 2010
a(n) = Product_{i = 2..n} (1-i)^( (pi(i)-pi(i-1)) * floor( (cos(n*Pi/i))^2 ) ), where pi = A000720, Pi = A000796. - Wesley Ivan Hurt, May 24 2013
a(n) = -limit of zeta(s)*(Sum_{d divides n} moebius(d)/exp(d)^(s-1)) as s->1 for n>1. - Mats Granvik, Jul 31 2013
a(n) = Sum_{d divides n} mu(d)*rad(d), where rad is A007947. - Enrique Pérez Herrero, May 29 2014
Conjecture for n>1: Let n = 2^(A007814(n))*m = 2^(ruler(n))*odd_part(n), where m = A000265(n), then a(n) = (-1)^(m=n)*(0+Sum_{i=1..m and gcd(i,m)=1} (4*min(i,m-i)-m)) = (-1)^(m<n)*(1+Sum_{i=1..m and gcd(i,m)>1} (4*min(i,m-i)-m)). - I. V. Serov, May 02 2017
a(n) = (-1)^A001221(n) * A173557(n). - R. J. Mathar, Nov 02 2017
a(1) = 1; for n > 1, a(n) = (1-A020639(n)) * a(A028234(n)), because multiplicative with a(p^e) = (1-p). - Antti Karttunen, Nov 28 2017
a(n) = 1 - Sum_{d|n, d > 1} d*a(n/d). - Ilya Gutkovskiy, Apr 26 2019
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k)) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)) = 0. (End)
a(n) = rad(n)*(-1)^omega(n)*phi(n)/n = A062953(n)*A000010(n)/n. - Amrit Awasthi, Jan 30 2022
a(n) = mu(n)*phi(n) = A008683(n)*A000010(n) whenever n is squarefree. - Amrit Awasthi, Feb 03 2022
From Peter Bala, Jan 24 2024: (Start)
a(n) = Sum_{d divides n} core(d)*mu(d). Cf. Comment by Benoit Cloitre, dated Apr 06 2002.
a(n) = Sum_{d|n, e|n} n/gcd(d, e) * mu(n/d) * mu(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value 1 - p for n = p^e, a prime power). (End)
From Peter Bala, Feb 01 2024: (Start)
G.f. Sum_{n >= 1} (2*n-1)*moebius(2*n-1)*x^(2*n-1)/(1 + x^(2n-1)).
a(n) = (-1)^(n+1) * Sum_{d divides n, d odd} d*moebius(d). (End)
EXAMPLE
x - x^2 - 2*x^3 - x^4 - 4*x^5 + 2*x^6 - 6*x^7 - x^8 - 2*x^9 + 4*x^10 - ...
MAPLE
A023900 := n -> mul(1-i, i=numtheory[factorset](n)); # Peter Luschny, Oct 26 2010
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ d MoebiusMu @ d, { d, Divisors[n]}]] (* Michael Somos, Jul 18 2011 *)
Array[ Function[ n, 1/Plus @@ Map[ #*MoebiusMu[ # ]/EulerPhi[ # ]&, Divisors[ n ] ] ], 90 ]
nmax = 81; Drop[ CoefficientList[ Series[ Sum[ MoebiusMu[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006 *)
t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n < k, If[n > 1 && k > 1, Sum[-t[k - i, n], {i, 1, n - 1}], 0], If[n > 1 && k > 1, Sum[-t[n - i, k], {i, 1, k - 1}], 0]]; Table[t[n, n], {n, 36}] (* Mats Granvik, Robert G. Wilson v, Jun 25 2011 *)
Table[DivisorSum[m, # MoebiusMu[#] &], {m, 90}] (* Jan Mangaldan, Mar 15 2013 *)
f[p_, e_] := (1 - p); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
PROG
(PARI) {a(n) = direuler( p=2, n, (1 - p*X) / (1 - X))[n]}
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d * moebius(d)))} /* Michael Somos, Jul 18 2011 */
(PARI) a(n)=sumdivmult(n, d, d*moebius(d)) \\ Charles R Greathouse IV, Sep 09 2014
(Haskell)
a023900 1 = 1
a023900 n = product $ map (1 -) $ a027748_row n
-- Reinhard Zumkeller, Jun 01 2015
(Python)
from sympy import divisors, mobius
def a(n): return sum([d*mobius(d) for d in divisors(n)]) # Indranil Ghosh, Apr 29 2017
(Python)
from math import prod
from sympy import primefactors
def A023900(n): return prod(1-p for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
(Scheme, with memoization-macro definec) (definec (A023900 n) (if (= 1 n) 1 (* (- 1 (A020639 n)) (A023900 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
CROSSREFS
Moebius transform is A055615.
Cf. A027748, A173557 (gives the absolute values), A295876.
Cf. A253905 (Dgf at s=3).
Sequence in context: A070777 A173614 A173557 * A141564 A374840 A239641
KEYWORD
sign,easy,nice,mult
STATUS
approved