OFFSET
1,2
COMMENTS
Dirichlet inverse of n (A000027).
Absolute values give n if n is squarefree, otherwise 0.
a(n) is multiplicative because both mu(n) and n are. - Mitch Harris, Jun 09 2005
a(n) is multiplicative with a(p^1) = -p, a(p^e) = 0 if e > 1. - David W. Wilson, Jun 12 2005
Negative of the Moebius number of the dihedral group of order 2n. - Eric M. Schmidt, Jul 28 2013
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
Mats Granvik, Primes approximated by eigenvalues.
Mats Granvik, Mobius function times n approximated by eigenvalues.
FORMULA
a(n) = n * A008683(n).
Dirichlet g.f.: 1/zeta(s-1).
Multiplicative with a(p^e) = -p*0^(e-1), e>0 and p prime. - Reinhard Zumkeller, Jul 17 2003
Conjectures: lim b->1+ Sum n=1..inf a(n)*b^(-n) = -12 and lim b->1- Sum n=1..inf a(n)*b^n = -12 (+ indicates that b decreases to 1, - indicates it increases to 1), both considering that zeta(-1) = -1/12 and calculations (more generally mu(n)*n^s is Abel summable to zeta(-s)). - Gerald McGarvey, Sep 26 2004
Dirichlet generating function for the absolute value: zeta(s-1)/zeta(2s-2). - Franklin T. Adams-Watters, Sep 11 2005
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k*A(x^k). - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2. - Amiram Eldar, Feb 02 2024
EXAMPLE
G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...
MAPLE
with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014
MATHEMATICA
Table[n MoebiusMu[n], {n, 80}] (* Harvey P. Dale, May 26 2011 *)
PROG
(PARI) {a(n) = if( n<1, 0, n * moebius(n))};
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n])};
(Magma) [n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
(Haskell)
a055615 n = a008683 n * n -- Reinhard Zumkeller, Sep 04 2015
(SageMath) [n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022
(Python)
from sympy import mobius
def A055615(n): return n*mobius(n) # Chai Wah Wu, Apr 01 2023
CROSSREFS
KEYWORD
sign,easy,nice,mult
AUTHOR
Michael Somos, Jun 04 2000
STATUS
approved