login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334657
Dirichlet g.f.: 1 / zeta(s-2).
9
1, -4, -9, 0, -25, 36, -49, 0, 0, 100, -121, 0, -169, 196, 225, 0, -289, 0, -361, 0, 441, 484, -529, 0, 0, 676, 0, 0, -841, -900, -961, 0, 1089, 1156, 1225, 0, -1369, 1444, 1521, 0, -1681, -1764, -1849, 0, 0, 2116, -2209, 0, 0, 0, 2601, 0, -2809, 0, 3025, 0, 3249, 3364, -3481, 0, -3721
OFFSET
1,2
COMMENTS
Dirichlet inverse of A000290.
Moebius transform of A046970.
Inverse Moebius transform of A053822.
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = x - 2^2 * A(x^2) - 3^2 * A(x^3) - 4^2 * A(x^4) - ...
a(1) = 1; a(n) = -n^2 * Sum_{d|n, d < n} a(d) / d^2.
a(n) = mu(n) * n^2.
Multiplicative with a(p^e) = -p^2 if e = 1 and 0 otherwise. - Amiram Eldar, Oct 25 2020
MATHEMATICA
Table[MoebiusMu[n] n^2, {n, 61}]
CROSSREFS
KEYWORD
sign,mult,easy
AUTHOR
Ilya Gutkovskiy, May 07 2020
STATUS
approved