login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053822
Dirichlet inverse of sigma_2 function (A001157).
9
1, -5, -10, 4, -26, 50, -50, 0, 9, 130, -122, -40, -170, 250, 260, 0, -290, -45, -362, -104, 500, 610, -530, 0, 25, 850, 0, -200, -842, -1300, -962, 0, 1220, 1450, 1300, 36, -1370, 1810, 1700, 0, -1682, -2500, -1850, -488, -234, 2650, -2210, 0, 49, -125, 2900, -680
OFFSET
1,2
COMMENTS
sigma_2(n) is the sum of the squares of the divisors of n (A001157).
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.
LINKS
FORMULA
Dirichlet g.f.: 1/(zeta(s)*zeta(s-2)).
Multiplicative with a(p^1) = -1-p^2, a(p^2) = p^2, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^2. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 26 2024: (Start)
a(n) = Sum_{d divides n} d * (sigma(d))^(-1) * phi(n/d), where (sigma(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma(n) = A000203(n).
a(n) = Sum_{d divides n} d^2 * (sigma_k(d))^(-1) * J_(k+2)(n/d) for k >= 0, where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)
MAPLE
f1:= proc(p, e) if e = 1 then -1-p^2 elif e=2 then p^2 else 0 fi end proc:
f:= n -> mul(f1(t[1], t[2]), t=ifactors(n)[2]);
map(f, [$1..100]); # Robert Israel, Jan 29 2018
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d] d^2, {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Mar 05 2019, after Ilya Gutkovskiy *)
f[p_, e_] := If[e == 1, -p^2 - 1, If[e == 2, p^2, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sigma(n, 2)))} \\ Andrew Howroyd, Aug 05 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020
CROSSREFS
Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053825 (k = 3), A053826 (k = 4), A178448 (k = 5).
Cf. A001157,.
Sequence in context: A295121 A066200 A357913 * A376487 A262922 A276652
KEYWORD
sign,mult,look
AUTHOR
N. J. A. Sloane, Apr 08 2000
STATUS
approved