OFFSET
1,2
COMMENTS
sigma_2(n) is the sum of the squares of the divisors of n (A001157).
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: 1/(zeta(s)*zeta(s-2)).
Multiplicative with a(p^1) = -1-p^2, a(p^2) = p^2, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^2. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 26 2024: (Start)
a(n) = Sum_{d divides n} d * (sigma(d))^(-1) * phi(n/d), where (sigma(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma(n) = A000203(n).
a(n) = Sum_{d divides n} d^2 * (sigma_k(d))^(-1) * J_(k+2)(n/d) for k >= 0, where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)
MAPLE
f1:= proc(p, e) if e = 1 then -1-p^2 elif e=2 then p^2 else 0 fi end proc:
f:= n -> mul(f1(t[1], t[2]), t=ifactors(n)[2]);
map(f, [$1..100]); # Robert Israel, Jan 29 2018
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d] d^2, {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Mar 05 2019, after Ilya Gutkovskiy *)
f[p_, e_] := If[e == 1, -p^2 - 1, If[e == 2, p^2, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sigma(n, 2)))} \\ Andrew Howroyd, Aug 05 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Apr 08 2000
STATUS
approved