login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262922
a(1)=1; for n>1, a(n) = a(n-1) + n + 2 if a(n-1) and n are coprime, otherwise a(n) = a(n-1)/gcd(a(n-1),n).
2
1, 5, 10, 5, 1, 9, 18, 9, 1, 13, 26, 13, 1, 17, 34, 17, 1, 21, 42, 21, 1, 25, 50, 25, 1, 29, 58, 29, 1, 33, 66, 33, 1, 37, 74, 37, 1, 41, 82, 41, 1, 45, 90, 45, 1, 49, 98, 49, 1, 53, 106, 53, 1, 57, 114, 57, 1, 61, 122, 61, 1, 65, 130, 65, 1, 69, 138, 69, 1, 73, 146, 73, 1, 77, 154, 77, 1, 81, 162
OFFSET
1,2
COMMENTS
This recurrence is quasi-periodic.
For some choice of starting value a(1) there exists an integer t>=1 such that a(4*t-3)=1, a(4*t-2)=4*t+1, a(4*t-1)=2*(4*t+1), a(4*t)=4*t+1. The loop is (1,x,2x,x).
For some choice of starting value a(1) there exists an integer t>=1 such that a(2*t)=2*t-1 and a(2*t-1)=2*(2*t-1). The loop is (x,2x). See also A133058.
Quasi-periodic sequences exist only for R=0,1,2 or 3 in a(n) = a(n-1) + n + R. For R=0,1,2 all starting values give a quasi-periodic sequence. The respective loop is (1,x) for R=0, (1,x,2x,2) for R=1, (1,x,2x,x) or (x,2x) for R=2. For R=3 only some starting values converge to a 6-loop (4x+2,2x+1,3x+6,x+2,2x+9,3x+17). Conjecture: For R>=4 the recurrence is not quasi-periodic.
LINKS
Benoit Cloitre, 10 conjectures in additive number theory, arXiv:1101.4274 [math.NT], 2011.
Eric S. Rowland, A natural prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
FORMULA
Maple suggests the rational o.g.f. (-x^6 - x^5 - x^3 + 6x^2 + 4x + 1)/((x + 1)(x - 1)^2(x^2 + 1)^2), which should be easy to check. - _Pater Bala_, Oct 04 2015
MATHEMATICA
a[1] = 1; a[n_] := a[n] = If[CoprimeQ[a[n - 1], n], a[n - 1] + n + 2, a[n - 1]/GCD[a[n - 1], n]]; Array[a, {79}] (* Michael De Vlieger, Oct 05 2015 *)
PROG
(PARI) A=vector(1000, i, 1); for(n=2, #A, A[n]=if(gcd(A[n-1], n)>1, A[n-1]/gcd(A[n-1], n), A[n-1]+n+2))
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Oct 04 2015
STATUS
approved