login
A110643
Every 2nd term of A083950 where the self-convolution 2nd power is congruent modulo 4 to A083950, which consists entirely of numbers 1 through 10.
2
1, 5, 10, 5, 10, 3, 5, 10, 10, 10, 5, 5, 5, 5, 5, 8, 10, 10, 5, 10, 7, 10, 5, 10, 5, 7, 5, 5, 10, 10, 7, 10, 10, 5, 5, 9, 5, 5, 5, 10, 8, 10, 10, 10, 10, 8, 5, 5, 10, 10, 5, 10, 10, 10, 5, 6, 5, 5, 10, 5, 10, 10, 5, 10, 10, 1, 5, 5, 10, 10, 5, 5, 5, 10, 5, 5, 10, 5, 5, 10, 4, 10, 10, 5, 5, 6, 10
OFFSET
0,2
EXAMPLE
A(x) = 1 + 5*x + 10*x^2 + 5*x^3 + 10*x^4 + 3*x^5 + 5*x^6 +...
A(x)^2 = 1 + 10*x + 45*x^2 + 110*x^3 + 170*x^4 + 206*x^5 +...
A(x)^2 (mod 4) = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 +...
G(x) = 1 + 10*x + 5*x^2 + 10*x^3 + 10*x^4 + 2*x^5 + 5*x^6 +...
where G(x) is the g.f. of A083950.
PROG
(PARI) {a(n)=local(d=2, m=10, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved