

A110640


Every third term of A083949 where the selfconvolution third power is congruent modulo 27 to A083949, which consists entirely of numbers 1 through 9.


2



1, 3, 3, 1, 6, 6, 9, 6, 6, 9, 3, 3, 2, 6, 6, 7, 9, 9, 5, 9, 9, 3, 6, 6, 5, 9, 9, 3, 9, 9, 1, 6, 6, 7, 6, 6, 3, 9, 9, 5, 3, 3, 5, 9, 9, 9, 9, 9, 9, 6, 6, 2, 9, 9, 8, 3, 3, 3, 3, 3, 1, 3, 3, 7, 9, 9, 1, 6, 6, 1, 9, 9, 4, 3, 3, 8, 9, 9, 5, 3, 3, 1, 6, 6, 1, 6, 6, 2, 9, 9, 9, 9, 9, 2, 6, 6, 7, 3, 3, 6, 6, 6, 8, 9, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..104.


EXAMPLE

A(x) = 1 + 3*x + 3*x^2 + x^3 + 6*x^4 + 6*x^5 + 9*x^6 +...
A(x)^3 = 1 + 9*x + 36*x^2 + 84*x^3 + 144*x^4 + 252*x^5 +...
A(x)^3 (mod 27) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 +...
G(x) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 + 3*x^6 +...
where G(x) is the g.f. of A083949.


PROG

(PARI) {a(n)=local(d=3, m=9, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}


CROSSREFS

Cf. A083949, A110639.
Sequence in context: A165202 A010468 A082009 * A143389 A219218 A208524
Adjacent sequences: A110637 A110638 A110639 * A110641 A110642 A110643


KEYWORD

nonn


AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 30 2005


STATUS

approved



