login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110639 Every 9th term of A083949 where the self-convolution 9th power is congruent modulo 27 to A083949, which consists entirely of numbers 1 through 9. 1
1, 1, 9, 9, 2, 7, 5, 3, 5, 3, 1, 7, 3, 5, 5, 9, 9, 2, 8, 3, 1, 7, 1, 1, 4, 8, 5, 1, 1, 2, 9, 2, 7, 6, 8, 6, 6, 7, 2, 2, 5, 6, 5, 9, 6, 1, 6, 7, 4, 5, 6, 4, 9, 8, 4, 1, 4, 9, 9, 2, 3, 1, 9, 4, 2, 6, 6, 8, 2, 5, 3, 2, 5, 2, 8, 2, 4, 6, 4, 8, 6, 2, 5, 2, 8, 9, 8, 1, 2, 3, 3, 2, 9, 1, 1, 1, 4, 8, 5, 5, 7, 8, 7, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..104.

EXAMPLE

A(x) = 1 + x + 9*x^2 + 9*x^3 + 2*x^4 + 7*x^5 + 5*x^6 +...

A(x)^9 = 1 + 9*x + 117*x^2 + 813*x^3 + 5976*x^4 + 33381*x^5 +...

A(x)^9 (mod 27) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 +...

G(x) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 + 3*x^6 +...

where G(x) is the g.f. of A083949.

PROG

(PARI) {a(n)=local(d=9, m=9, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}

CROSSREFS

Cf. A083949, A110640, A110641.

Sequence in context: A255169 A019892 A275710 * A254273 A011211 A074879

Adjacent sequences:  A110636 A110637 A110638 * A110640 A110641 A110642

KEYWORD

nonn

AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 08:12 EDT 2019. Contains 325155 sequences. (Running on oeis4.)