login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143389
Coefficient Expansion sequence of a Weaver Morse Code polynomial (using Cyclotomic prime base dot, dash, letter space and word space symbols): p(x) = -5 - 10 x - 12 x^2 - 10 x^3 - 7 x^4 - 3 x^5 + 5 x^7 + 8 x^8 + 9 x^9 + 8 x^10 + 6 x^11 + 3 x^12 + x^13.
0
1, -3, 3, 1, -6, 7, -1, -9, 11, 7, -34, 32, 23, -95, 99, 27, -219, 250, 76, -571, 619, 241, -1517, 1684, 511, -3927, 4500, 1205, -10120, 11628, 3041, -26200, 30648, 7148, -68161, 80975, 16901, -176402, 212169, 39547, -456228, 557737, 91154, -1183066, 1466383
OFFSET
0,2
REFERENCES
Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pp. 37-38.
FORMULA
p(x) = -5 - 10 x - 12 x^2 - 10 x^3 - 7 x^4 - 3 x^5 + 5 x^7 + 8 x^8 + 9 x^9 + 8 x^10 + 6 x^11 + 3 x^12 + x^13; a(n) = Coefficient_expansion(x^13*p(1/x)).
G.f.: -1/(5*x^13+10*x^12+12*x^11+10*x^10+7*x^9+3*x^8-5*x^6-8*x^5 -9*x^4 -8*x^3-6*x^2-3*x-1).
EXAMPLE
Weaver determinant:
A0 = Cyclotomic[2, x]
B0 = Cyclotomic[5, x]
C0 = Cyclotomic[3, x]
D0 = Cyclotomic[7, x]
Expand[FullSimplify[ExpandAll[((1 + x) (1 + x + x^2) (
1 + x + x^2 + x^3 + x^4) (
1 + x + x^2 + x^3 + x^4 + x^5 + x^6))*Det[{{-1, (1/B0 + 1/A0)}, {(1/
D0 + 1/C0),
1/A0 + 1/B0 - 1}}]]]]
MATHEMATICA
p[x_] = -5 - 10 x - 12 x^2 - 10 x^3 - 7 x^4 - 3 x^5 + 5 x^7 + 8 x^8 + 9 x^9 + 8 x^10 + 6 x^11 + 3 x^12 + x^13; q[x_] = ExpandAll[x^13*p[1/x]]; a = Table[SeriesCoefficient[Series[1/q[x], {x, 0, 30}], n], {n, 0, 30}]
CROSSREFS
Sequence in context: A010468 A082009 A110640 * A219218 A208524 A094040
KEYWORD
uned,sign
AUTHOR
STATUS
approved