

A110644


Every 11th term of A084066 such that the selfconvolution 11th power is congruent modulo 121 to A084066, which consists entirely of numbers 1 through 11.


1



1, 1, 7, 4, 9, 5, 5, 1, 5, 5, 11, 11, 9, 5, 11, 4, 8, 10, 10, 8, 10, 5, 11, 6, 1, 7, 1, 11, 5, 10, 1, 9, 4, 3, 9, 6, 8, 1, 6, 3, 4, 8, 2, 4, 4, 8, 10, 2, 4, 11, 1, 7, 11, 9, 11, 5, 2, 1, 4, 7, 9, 3, 2, 5, 8, 1, 8, 7, 4, 3, 2, 3, 5, 9, 1, 9, 5, 4, 1, 4, 6, 8, 5, 6, 9, 7, 4, 4, 5, 4, 6, 4, 10, 6, 6, 9, 9, 9, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS



LINKS



FORMULA

a(n) = A084066(11*n) for n>=0. G.f. satisfies: A(x^11) = G(x)  11*x*((1x^10)/(1x))/(1x^11), where G(x) is the g.f. of A084066. G.f. satisfies: A(x)^11 = A(x^11) + 11*x*((1x^10)/(1x))/(1x^11) + 121*x^2*H(x) where H(x) is the g.f. of A111585.


PROG

(PARI) {a(n)=local(p=11, A, C, X=x+x*O(x^(p*n))); if(n==0, 1, A=sum(i=0, n1, a(i)*x^(p*i))+p*x*((1x^(p1))/(1X))/(1X^p); for(k=1, p, C=polcoeff((A+k*x^(p*n))^(1/p), p*n); if(denominator(C)==1, return(k); break)))}


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



