

A110647


Every 4th term of A084067 where the selfconvolution 4th power is congruent modulo 8 to A084067, which consists entirely of numbers 1 through 12.


4



1, 9, 12, 6, 12, 9, 12, 6, 6, 2, 6, 12, 8, 3, 12, 9, 6, 12, 2, 3, 3, 7, 9, 9, 12, 3, 3, 2, 12, 6, 3, 9, 3, 4, 6, 3, 9, 6, 3, 10, 6, 9, 12, 9, 12, 9, 9, 6, 2, 9, 12, 5, 3, 6, 12, 9, 6, 9, 12, 6, 8, 6, 12, 10, 9, 12, 1, 9, 3, 9, 12, 6, 7, 12, 12, 2, 9, 3, 9, 12, 12, 4, 9, 9, 11, 6, 6, 1, 9, 6, 10, 3, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS



EXAMPLE

A(x) = 1 + 9*x + 12*x^2 + 6*x^3 + 12*x^4 + 9*x^5 +...
A(x)^4 = 1 + 36*x + 534*x^2 + 4236*x^3 + 19785*x^4 +...
A(x)^4 (mod 8) = 1 + 4*x + 6*x^2 + 4*x^3 + x^4 + 4*x^5 +...
G(x) = 1 + 12*x + 6*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 4*x^6 +...


PROG

(PARI) {a(n)=local(d=4, m=12, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



