OFFSET
1,1
COMMENTS
The title refers to the sequence of first differences, A132199.
Setting a(1) = 4 gives A084662.
Rowland proves that the first differences are all 1's or primes. The prime differences form A137613.
See A137613 for additional comments, links and references. - Jonathan Sondow, Aug 14 2008
Not all starting values generate differences of all 1's or primes. The following a(1) generate composite differences: 532, 533, 534, 535, 698, 699, 706, 707, 708, 709, 712, 713, 714, 715, ... - Dmitry Kamenetsky, Jul 18 2015
The same results are obtained if 2's are removed from n when gcd is performed, so the following is also true: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(A000265(n), a(n-1)). - David Morales Marciel, Sep 14 2016
REFERENCES
Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..25000 (terms 1..1000 from T. D. Noe)
Fernando Chamizo, Dulcinea Raboso and Serafin Ruiz-Cabello, On Rowland's sequence, Electronic J. Combin., Vol. 18(2), 2011, #P10.
Brian Hayes, Pumping the Primes, bit-player, 19 August 2015.
Eric S. Rowland, A simple prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
Eric S. Rowland, Prime-Generating Recurrence, Wolfram Demonstrations Project. - Robert G. Wilson v, Sep 10 2008
Eric S. Rowland, Prime-Generating Recurrences and a Tale of Logarithmic Scale, YouTube video, 2023.
MAPLE
S:=7; f:= proc(n) option remember; global S; if n=1 then RETURN(S); else RETURN(f(n-1)+gcd(n, f(n-1))); fi; end; [seq(f(n), n=1..200)];
MATHEMATICA
a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Array[a, 66] (* Robert G. Wilson v, Sep 10 2008 *)
PROG
(PARI) a=vector(100); a[1]=7; for(n=2, #a, a[n]=a[n-1]+gcd(n, a[n-1])); a \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a106108 n = a106108_list !! (n-1)
a106108_list =
7 : zipWith (+) a106108_list (zipWith gcd a106108_list [2..])
-- Reinhard Zumkeller, Nov 15 2013
(Magma) [n le 1 select 7 else Self(n-1) + Gcd(n, Self(n-1)): n in [1..70]]; // Vincenzo Librandi, Jul 19 2015
(Python)
from itertools import count, islice
from math import gcd
def A106108_gen(): # generator of terms
yield (a:=7)
for n in count(2):
yield (a:=a+gcd(a, n))
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2008
STATUS
approved