login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106108
Rowland's prime-generating sequence: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(n, a(n-1)).
61
7, 8, 9, 10, 15, 18, 19, 20, 21, 22, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 141, 144, 145, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168
OFFSET
1,1
COMMENTS
The title refers to the sequence of first differences, A132199.
Setting a(1) = 4 gives A084662.
Rowland proves that the first differences are all 1's or primes. The prime differences form A137613.
See A137613 for additional comments, links and references. - Jonathan Sondow, Aug 14 2008
Not all starting values generate differences of all 1's or primes. The following a(1) generate composite differences: 532, 533, 534, 535, 698, 699, 706, 707, 708, 709, 712, 713, 714, 715, ... - Dmitry Kamenetsky, Jul 18 2015
The same results are obtained if 2's are removed from n when gcd is performed, so the following is also true: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(A000265(n), a(n-1)). - David Morales Marciel, Sep 14 2016
REFERENCES
Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..25000 (terms 1..1000 from T. D. Noe)
Fernando Chamizo, Dulcinea Raboso and Serafin Ruiz-Cabello, On Rowland's sequence, Electronic J. Combin., Vol. 18(2), 2011, #P10.
Brian Hayes, Pumping the Primes, bit-player, 19 August 2015.
Eric S. Rowland, A simple prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
Eric S. Rowland, Prime-Generating Recurrence, Wolfram Demonstrations Project. - Robert G. Wilson v, Sep 10 2008
MAPLE
S:=7; f:= proc(n) option remember; global S; if n=1 then RETURN(S); else RETURN(f(n-1)+gcd(n, f(n-1))); fi; end; [seq(f(n), n=1..200)];
MATHEMATICA
a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Array[a, 66] (* Robert G. Wilson v, Sep 10 2008 *)
PROG
(PARI) a=vector(100); a[1]=7; for(n=2, #a, a[n]=a[n-1]+gcd(n, a[n-1])); a \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a106108 n = a106108_list !! (n-1)
a106108_list =
7 : zipWith (+) a106108_list (zipWith gcd a106108_list [2..])
-- Reinhard Zumkeller, Nov 15 2013
(Magma) [n le 1 select 7 else Self(n-1) + Gcd(n, Self(n-1)): n in [1..70]]; // Vincenzo Librandi, Jul 19 2015
(Python)
from itertools import count, islice
from math import gcd
def A106108_gen(): # generator of terms
yield (a:=7)
for n in count(2):
yield (a:=a+gcd(a, n))
A106108_list = list(islice(A106108_gen(), 20)) # Chai Wah Wu, Mar 14 2023
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2008
STATUS
approved