login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230504
Smallest prime in r(k) = r(k-1) + gcd(k,r(k-1)) with r(1) = n.
5
2, 2, 3, 19, 5, 19, 7, 11, 11, 17, 11, 17, 13, 17, 17, 23, 17, 23, 19, 23, 23, 29, 23, 29, 29, 29, 29, 37, 29, 37, 31, 37, 37, 53, 53, 53, 37, 41, 41, 47, 41, 47, 43, 47, 47, 53, 47, 53, 53, 53, 53, 59, 53, 59, 59, 59, 59, 67, 59, 67, 61, 67, 67, 79, 79, 79
OFFSET
1,1
COMMENTS
a(p) = p, p prime;
a(2*n-1) = A060264(n-1).
LINKS
Eric S. Rowland, A simple prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
EXAMPLE
n = 1 -> 1 + GCD(1,2) = 1+1 = 2 = prime(1) = a(1);
n = 2 = prime(1) = a(2);
n = 3 = prime(2) = a(3);
n = 4 -> 4+GCD(4,2) = 4+2 = 6 -> 6+GCD(6,3) = 6+3 = 9 -> 9+GCD(9,4) = 9+1 = 10 -> 10+GCD(10,5) = 10+5 = 15 -> 15+GCD(15,6) = 15+3 = 18 -> 18+GCD(18,7) = 18+1 = 19 = prime(8) = a(4) = A084662(7);
n = 5 = prime(3) = a(5) = A134736(1);
n = 6 -> 6+GCD(6,2) = 6+2 = 8 -> 8+GCD(8,3) = 8+1 = 9 -> 9+GCD(9,4) = 9+1 = 10 -> 10+GCD(10,5) = 10+5 = 15 -> 15+GCD(15,6) = 15+3 = 18 -> 18+GCD(18,7) = 18+1 = 19 = prime(8) = a(6);
n = 7 = prime(4) = a(7) = A106108(1);
n = 8 -> 8+GCD(8,2) = 8+2 = 10 -> 10+GCD(10,3) = 10+1 = 11 = prime(5) = a(8) = A084663(3);
n = 9 -> 9+GCD(9,2) = 9+2 = 11 = prime(5) = a(9);
n = 10 -> 10+GCD(10,2) = 10+2 = 12 -> 12+GCD(12,3) = 12+3 = 15 -> 15+GCD(15,4) = 15+1 = 16 -> 16+GCD(16,5) = 16+1 = 17 = prime(7) = a(10);
n = 11 = prime(5) = a(11);
n = 12 -> 12+GCD(12,2) = 12+2 = 14 -> 14+GCD(14,3) = 14+1 = 15 -> 15+GCD(15,4) = 15+1 = 16 -> 16+GCD(16,5) = 16+1 = 17 = prime(7) = a(10).
MATHEMATICA
a[n_] := Module[{r}, If[PrimeQ[n], n, r[1]=n; r[k_] := r[k] = r[k-1] + GCD[k, r[k-1]]; For[k=1, True, k++, If[PrimeQ[r[k]], Return[r[k]]]]]];
Array[a, 66] (* Jean-François Alcover, Dec 03 2018 *)
PROG
(Haskell)
a230504 n = head $ filter ((== 1) . a010051') rs where
rs = n : zipWith (+) rs (zipWith gcd rs [2..])
(Python)
from math import gcd
from itertools import count, accumulate
from sympy import isprime
def A230504(n): return next(filter(isprime, accumulate(count(2), lambda x, y:x+gcd(x, y), initial=n))) # Chai Wah Wu, Mar 15 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 15 2013
STATUS
approved