The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084663 a(1) = 8; a(n) = a(n-1) + gcd(a(n-1), n). 22
 8, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 177, 180, 181, 182, 189, 190 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The first 150000000 differences are all primes or 1. Is this true in general? REFERENCES Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986). LINKS Indranil Ghosh, Table of n, a(n) for n = 1..50000 Eric S. Rowland, A simple prime-generating recurrence. E. S. Rowland, A natural prime-generating recurrence, JIS 11 (2008) 08.2.8 MAPLE S := 8; f := proc(n) option remember; global S; if n=1 then S else f(n-1)+igcd(n, f(n-1)); fi; end; MATHEMATICA f[n_] := f[n-1] + GCD[n, f[n-1]]; f[1]=8 RecurrenceTable[{a[1]==8, a[n]==a[n-1]+GCD[a[n-1], n]}, a, {n, 70}] (* Harvey P. Dale, Apr 12 2016 *) PROG (Haskell) a084663 n = a084663_list !! (n-1) a084663_list =    8 : zipWith (+) a084663_list (zipWith gcd a084663_list [2..]) -- Reinhard Zumkeller, Nov 15 2013 CROSSREFS Cf. A084662, A106108. Cf. A230504, A134744 (first differences), A134736. Sequence in context: A043697 A043624 A043425 * A242857 A031037 A006757 Adjacent sequences:  A084660 A084661 A084662 * A084664 A084665 A084666 KEYWORD nonn AUTHOR Matthew Frank (mfrank(AT)wopr.wolfram.com) on behalf of the 2003 New Kind of Science Summer School, Jul 15 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 01:28 EST 2022. Contains 350481 sequences. (Running on oeis4.)