The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084660 Decimal expansion of solution of area bisectors problem. 1
 0, 1, 9, 8, 6, 0, 3, 8, 5, 4, 1, 9, 9, 5, 8, 9, 8, 2, 0, 6, 2, 9, 2, 4, 0, 9, 1, 0, 9, 3, 6, 3, 2, 4, 2, 6, 0, 5, 6, 6, 2, 5, 1, 0, 0, 7, 7, 0, 1, 9, 1, 4, 4, 0, 5, 9, 0, 5, 1, 0, 0, 0, 7, 1, 2, 0, 0, 4, 5, 2, 1, 6, 4, 7, 7, 2, 7, 1, 0, 3, 6, 7, 0, 4, 3, 9, 7, 4, 9, 5, 2, 4, 7, 3, 1, 4, 0, 1, 5, 6, 5, 6, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Henry Bottomley, Area bisectors of a triangle. Zak Seidov 3-points in 3-4-5 triangle FORMULA Equals (3*log(2) - 2)/4. Sum_{i>0} 1/((4i-1)*4i*(4i+1)) = Sum_{i>0} 1/A069140(i). - Henry Bottomley, Jul 09 2003 EXAMPLE 0.0198603854199589820629240910936324260566251... MATHEMATICA Join[{0}, RealDigits[N[3/4*Log[2]-1/2, 108]][[1]]] (* Georg Fischer, Jul 15 2021 *) PROG (PARI) 3*log(2)/4-1/2 \\ Charles R Greathouse IV, Apr 13 2020 (Magma) SetDefaultRealField(RealField(119)); Log(8/Exp(2))/4 // G. C. Greubel, Mar 22 2023 (SageMath) numerical_approx(log(8/exp(2))/4, digits=119) # G. C. Greubel, Mar 22 2023 CROSSREFS Sequence in context: A327341 A059068 A059069 * A002391 A193626 A316600 Adjacent sequences: A084657 A084658 A084659 * A084661 A084662 A084663 KEYWORD cons,easy,nonn AUTHOR Zak Seidov, Jun 28 2003 EXTENSIONS a(100) corrected by Georg Fischer, Jul 15 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 18:04 EDT 2023. Contains 363165 sequences. (Running on oeis4.)