

A059068


Cardmatching numbers (DinnerDiner matching numbers).


0



1, 9, 8, 6, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, 216, 54, 0, 1, 748521, 3662976, 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is a triangle of card matching numbers. A deck has 4 kinds of cards, n of each kind. The deck is shuffled and dealt in to 4 hands with each with n cards. A match occurs for every card in the jth hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..4n). The probability of exactly k matches is T(n,k)/((4n)!/n!^4).
Rows have lengths 1,5,9,13,...
Analogous to A008290  Zerinvary Lajos, Jun 22 2005


REFERENCES

F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.


LINKS

Table of n, a(n) for n=0..36.
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a CardMatching Problem, Mathematics Magazine 69 (1996), 190197.
Barbara H. Margolius, DinnerDiner Matching Probabilities
B. H. Margolius, The DinnerDiner Matching Problem, Mathematics Magazine, 76 (2003), 107118.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617620.
Index entries for sequences related to card matching


FORMULA

G.f.: sum(coeff(R(x, n, k), x, j)*(t1)^j*(n*kj)!, j=0..n*k) where n is the number of kinds of cards (4 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((kj)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.


EXAMPLE

There are 736 ways of matching exactly 2 cards when there are 2 cards of each kind and 4 kinds of card so T(2,2)=736.


MAPLE

p := (x, k)>k!^2*sum(x^j/((kj)!^2*j!), j=0..k); R := (x, n, k)>p(x, k)^n; f := (t, n, k)>sum(coeff(R(x, n, k), x, j)*(t1)^j*(n*kj)!, j=0..n*k);
for n from 0 to 5 do seq(coeff(f(t, 4, n), t, m)/n!^4, m=0..4*n); od;


MATHEMATICA

p[x_, k_] := k!^2*Sum[x^j/((kj)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t1)^j*(n*kj)!, {j, 0, n*k}]; Table[ Coefficient[f[t, 4, n], t, m]/n!^4, {n, 0, 4}, {m, 0, 4*n}] // Flatten (* JeanFrançois Alcover, Dec 17 2012, translated from Maple *)


CROSSREFS

Cf. A008290, A059056A059071.
Cf. A008290.
Sequence in context: A200292 A155791 A327341 * A059069 A084660 A002391
Adjacent sequences: A059065 A059066 A059067 * A059069 A059070 A059071


KEYWORD

nonn,tabf,nice


AUTHOR

Barbara Haas Margolius (margolius(AT)math.csuohio.edu)


STATUS

approved



