OFFSET
0,7
COMMENTS
This is a triangle of card matching numbers. A deck has n kinds of cards, 2 of each kind. The deck is shuffled and dealt in to n hands with 2 cards each. A match occurs for every card in the j-th hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..2n). The probability of exactly k matches is T(n,k)/((2n)!/2^n).
Rows are of length 1,3,5,7,... = A005408(n). [Edited by M. F. Hasler, Sep 21 2015]
Analogous to A008290. - Zerinvary Lajos, Jun 10 2005
REFERENCES
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
LINKS
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
Barbara H. Margolius, Dinner-Diner Matching Probabilities
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
FORMULA
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 2) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the j-th coefficient on x of the rook polynomial.
EXAMPLE
There are 4 ways of matching exactly 2 cards when there are 2 different kinds of cards, 2 of each in each of the two decks so T(2,2)=4.
Triangle begins:
1
"0", 0, 1
1, '0', "4", 0, 1
10, 24, 27, '16', "12", 0, 1
297, 672, 736, 480, 246, '64', "24", 0, 1
13756, 30480, 32365, 21760, 10300, 3568, 970, '160', "40", 0, 1
925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, '320', "60", 0, 1
Diagonal " ": T(n,2n-2) = 0, 4, 12, 24, 40, 60, 84, 112, 144, ... equals A046092
Diagonal ' ': T(n,2n-3) = 0, 16, 64, 160, 320, 560, 896, 1344, ... equals A102860
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k);
for n from 0 to 7 do seq(coeff(f(t, n, 2), t, m)/2^n, m=0..2*n); od;
MATHEMATICA
p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}];
R[x_, n_, k_] := p[x, k]^n;
f[t_, n_, k_] := Sum[ Coefficient[ R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}];
Table[ Coefficient[ f[t, n, 2]/2^n, t, m], {n, 0, 6}, {m, 0, 2*n}] // Flatten
(* Jean-François Alcover, Sep 17 2012, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabf,nice
AUTHOR
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
EXTENSIONS
Additional comments from Zerinvary Lajos, Jun 18 2007
Edited by M. F. Hasler, Sep 21 2015
STATUS
approved