

A059056


Penrice Christmas gift numbers, Cardmatching numbers (DinnerDiner matching numbers): Triangle T(n,k) = number of ways to get k matches for a deck with n cards, 2 of each kind.


22



1, 0, 0, 1, 1, 0, 4, 0, 1, 10, 24, 27, 16, 12, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13756, 30480, 32365, 21760, 10300, 3568, 970, 160, 40, 0, 1, 925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, 320, 60, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


COMMENTS

This is a triangle of card matching numbers. A deck has n kinds of cards, 2 of each kind. The deck is shuffled and dealt in to n hands with 2 cards each. A match occurs for every card in the jth hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..2n). The probability of exactly k matches is T(n,k)/((2n)!/2^n).
Rows are of length 1,3,5,7,... = A005408(n). [Edited by M. F. Hasler, Sep 21 2015]
Analogous to A008290.  Zerinvary Lajos, Jun 10 2005


REFERENCES

F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.


LINKS

Table of n, a(n) for n=0..48.
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a CardMatching Problem, Mathematics Magazine 69 (1996), 190197.
Barbara H. Margolius, DinnerDiner Matching Probabilities
B. H. Margolius, The DinnerDiner Matching Problem, Mathematics Magazine, 76 (2003), 107118.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617620.
Index entries for sequences related to card matching


FORMULA

G.f.: sum(coeff(R(x, n, k), x, j)*(t1)^j*(n*kj)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 2) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((kj)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the jth coefficient on x of the rook polynomial.


EXAMPLE

There are 4 ways of matching exactly 2 cards when there are 2 different kinds of cards, 2 of each in each of the two decks so T(2,2)=4.
Triangle begins:
1
"0", 0, 1
1, '0', "4", 0, 1
10, 24, 27, '16', "12", 0, 1
297, 672, 736, 480, 246, '64', "24", 0, 1
13756, 30480, 32365, 21760, 10300, 3568, 970, '160', "40", 0, 1
925705, 2016480, 2116836, 1418720, 677655, 243360, 67920, 14688, 2655, '320', "60", 0, 1
Diagonal " ": T(n,2n2) = 0, 4, 12, 24, 40, 60, 84, 112, 144, ... equals A046092
Diagonal ' ': T(n,2n3) = 0, 16, 64, 160, 320, 560, 896, 1344, ... equals A102860


MAPLE

p := (x, k)>k!^2*sum(x^j/((kj)!^2*j!), j=0..k); R := (x, n, k)>p(x, k)^n; f := (t, n, k)>sum(coeff(R(x, n, k), x, j)*(t1)^j*(n*kj)!, j=0..n*k);
for n from 0 to 7 do seq(coeff(f(t, n, 2), t, m)/2^n, m=0..2*n); od;


MATHEMATICA

p[x_, k_] := k!^2*Sum[ x^j/((kj)!^2*j!), {j, 0, k}];
R[x_, n_, k_] := p[x, k]^n;
f[t_, n_, k_] := Sum[ Coefficient[ R[x, n, k], x, j]*(t1)^j*(n*kj)!, {j, 0, n*k}];
Table[ Coefficient[ f[t, n, 2]/2^n, t, m], {n, 0, 6}, {m, 0, 2*n}] // Flatten
(* JeanFrançois Alcover, Sep 17 2012, translated from Maple *)


CROSSREFS

Cf. A059056A059071, A008290.
Sequence in context: A342372 A289222 A121301 * A344393 A127153 A178979
Adjacent sequences: A059053 A059054 A059055 * A059057 A059058 A059059


KEYWORD

nonn,tabf,nice


AUTHOR

Barbara Haas Margolius (margolius(AT)math.csuohio.edu)


EXTENSIONS

Additional comments from Zerinvary Lajos, Jun 18 2007
Edited by M. F. Hasler, Sep 21 2015


STATUS

approved



