login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178979 Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the shortest block has length k (1 <= k <= n). 3
1, 1, 1, 4, 0, 1, 11, 3, 0, 1, 41, 10, 0, 0, 1, 162, 30, 10, 0, 0, 1, 715, 126, 35, 0, 0, 0, 1, 3425, 623, 56, 35, 0, 0, 0, 1, 17722, 2934, 364, 126, 0, 0, 0, 0, 1, 98253, 15165, 2220, 210, 126, 0, 0, 0, 0, 1, 580317, 86900, 10560, 330, 462, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Row sums are Bell numbers A000110.
Column 1 is A000296 (shifted).
From Peter Luschny, Apr 05 2011: (Start)
Sum_{k>1} T(n,k) = A000296(n) count the set partitions with blocks of size > 1.
T(n,1) = A000296(n-1) count the set partitions with blocks of size = 1. Thus for the Bell numbers A000110(n) = Sum_{k>=1} T(n,k) = A000296(n-1) + A000296(n). (End)
LINKS
Peter Luschny, Set partitions
FORMULA
E.g.f. for column k: exp((exp(x) - Sum_{i=0..k-1} x^i/i!)) - exp((exp(x) - Sum_{i=0..k} x^i/i!)).
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = A001700(n) = C(2n-1,n) for n>0.
T(2n-1,n-1) = A001700(n) = C(2n-1,n) for n>1. (End)
EXAMPLE
T(4,2) = card ({12|34, 13|24, 14|23}) = 3. - Peter Luschny, Apr 05 2011
Triangle begins:
1;
1, 1;
4, 0, 1;
11, 3, 0, 1;
41, 10, 0, 0, 1;
162, 30, 10, 0, 0, 1;
715, 126, 35, 0, 0, 0, 1;
...
MAPLE
g := k-> exp(x)*(1-(GAMMA(k, x)/GAMMA(k))); egf := k-> exp(g(k))-exp(g(k+1));
T := (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, Apr 05 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add(b(n-i*j, i+1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
T:= (n, k)-> b(n, k) -b(n, k+1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 25 2016
MATHEMATICA
a[k_]:= Exp[x]-Sum[x^i/i!, {i, 0, k}]; Transpose[Table[Range[20]! Rest[CoefficientList[Series[Exp[a[k-1]]-Exp[a[k]], {x, 0, 20}], x]], {k, 1, 9}]]//Grid
CROSSREFS
Sequence in context: A059056 A344393 A127153 * A228270 A335748 A266488
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 02 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 15:15 EDT 2024. Contains 374611 sequences. (Running on oeis4.)