login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178982
Partial sums of floor(Fibonacci(n)/2).
2
0, 0, 0, 1, 2, 4, 8, 14, 24, 41, 68, 112, 184, 300, 488, 793, 1286, 2084, 3376, 5466, 8848, 14321, 23176, 37504, 60688, 98200, 158896, 257105, 416010, 673124, 1089144, 1762278, 2851432, 4613721, 7465164, 12078896, 19544072, 31622980
OFFSET
0,5
COMMENTS
Partial sums of A004695.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round(Fibonacci(n+2)/2 - (n+2)/3).
a(n) = round(Fibonacci(n+2)/2 - n/3 - 1/2).
a(n) = floor(Fibonacci(n+2)/2 - n/3 - 1/2).
a(n) = ceiling(Fibonacci(n+2)/2 - (n+1)/3 - 1/2).
a(n) = a(n-3) + Fibonacci(n) - 1, n > 3.
a(n) = 2*a(n-1) - 2*a(n-4) + a(n-6), n > 5.
G.f.: -x^3 / ( (x^2+x+1)*(x^2+x-1)*(x-1)^2 ).
a(n) = (1/2) * (Fibonacci(n+2) + floor(n/3) - n - 1). - Ralf Stephan, Jan 19 2014
EXAMPLE
a(4) = 0 + 0 + 0 + 1 + 1 = 2.
MAPLE
seq(round(fibonacci(n+2)/2-(n+2)/3), n=0..40).
MATHEMATICA
f[n_] := Floor[Fibonacci@n/2]; Accumulate@ Array[f, 38, 0]
CROSSREFS
Sequence in context: A164168 A182747 A164406 * A164397 A164174 A164396
KEYWORD
nonn
AUTHOR
Mircea Merca, Jan 02 2011
STATUS
approved