The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004695 a(n) = floor(Fibonacci(n)/2). 21
 0, 0, 0, 1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 116, 188, 305, 493, 798, 1292, 2090, 3382, 5473, 8855, 14328, 23184, 37512, 60696, 98209, 158905, 257114, 416020, 673134, 1089154, 1762289, 2851443, 4613732, 7465176, 12078908, 19544084, 31622993, 51167077, 82790070, 133957148 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Column sums of: 1 1 2 3 5  8 13 21 34 55...       1 1  2  3  5  8 13...               1  1  2  3...                        1... --------------------------- 1 1 2 4 6 10 17 27 44 72... This sequence counts partially ordered partitions of (n-3) into parts no greater than 3, where the position of the 1's and 2's is important. Alternatively, the position of the 3's is unimportant. (see example below). - David Neil McGrath, Apr 26 2015 Also the matching and vertex cover number of the (n-2)-Fibonacci cube graph. - Eric W. Weisstein, Sep 06 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 H. Matsui et al., Problem B-1019, Fibonacci Quarterly, Vol. 45, Number 2; 2007; p. 182. [A related sequence.] Eric Weisstein's World of Mathematics, Fibonacci Cube Graph Eric Weisstein's World of Mathematics, Matching Number Eric Weisstein's World of Mathematics, Vertex Cover Number Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1). FORMULA G.f.: x^3/((1-x^3)*(1-x-x^2)). - Ralf Stephan, Jul 22 2003, corrected by Paul Barry a(n) = Fibonacci(n)/2 - (1-cos(2Pi*n/3))/3. - Paul Barry, Oct 06 2003 From Paul Barry, Jan 14 2005: (Start) a(n+2) = Sum_{k=0..floor(n/3)} F(n-3*k). a(n+2) = Sum_{k=0..n} if(mod(n-k, 3)=0, F(k), 0). (End) a(n+2) = Sum_{k=0..n} F(k)*(cos(2*Pi*(n-k)/3+Pi/3)/3+sqrt(3)*sin(2*Pi*(n-k)/3+Pi/3)/3+1/3). - Paul Barry, Apr 16 2005 a(n) = a(n-1)+a(n-2)+1 if n mod 3 = 0, else a(n) = a(n-1)+a(n-2). - Gary Detlefs, Dec 05 2010 a(n) = Fibonacci(n-2)+floor(Fibonacci(n-3)/2). - Gary Detlefs, Mar 28 2011 a(n) = (A000045(n) - A011655(n))/2. a(n) = a(n-1)+a(n-2)+a(n-3)-a(n-4)-a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(4)=1. - Carl Najafi, May 06 2014 EXAMPLE Partial Order of 6 into parts (1,2,3) with position of 3 unimportant. a(9)=17 These are (33),(321=231=213),(312=132=123),(3111=1311=1131=1113),(222),(2211),(2121),(2112),(1212),(1122),(1221),(21111),(12111),(11211),(11121),(11112),(111111). - David Neil McGrath, Apr 26 2015 MAPLE seq(iquo(fibonacci(n), 2), n=0..36); # Zerinvary Lajos, Apr 20 2008 f:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 3 = 1 then t1:=1 else t1:=0; fi: f(n-1)+f(n-2)+t1; end; [seq(f(n), n=1..100)]; # N. J. A. Sloane, May 25 2008 MATHEMATICA CoefficientList[Series[x^3 / ((1 - x^3) (1 - x - x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *) Floor[Fibonacci[Range[0, 50]]/2] (* Harvey P. Dale, Feb 15 2015 *) LinearRecurrence[{1, 1, 1, -1, -1}, {0, 0, 0, 1, 1}, 50] (* Harvey P. Dale, Feb 15 2015 *) Floor[Fibonacci[Range[0, 20]]/2] (* Eric W. Weisstein, Sep 06 2017 *) PROG (PARI) a(n)=fibonacci(n)\2 (MAGMA) [Floor(Fibonacci(n)/2): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011 CROSSREFS Cf. A036605, A027976, A081410. Sequence in context: A107742 A228779 A158510 * A014216 A192683 A079961 Adjacent sequences:  A004692 A004693 A004694 * A004696 A004697 A004698 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 22:34 EST 2020. Contains 332061 sequences. (Running on oeis4.)