|
|
A004698
|
|
a(n) = floor(Fibonacci(n)/5).
|
|
4
|
|
|
0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 11, 17, 28, 46, 75, 122, 197, 319, 516, 836, 1353, 2189, 3542, 5731, 9273, 15005, 24278, 39283, 63562, 102845, 166408, 269253, 435661, 704915, 1140577, 1845493, 2986070, 4831563
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,2,1,-3,-1,3,0,-2,1,2,-1,-1).
|
|
FORMULA
|
G.f.: x^5*(1+x)*(1-x+x^3-x^5+x^7)/((1-x-x^2)*(1-x^5)*(1-x^2+x^4-x^6+x^8)).
a(n) = (A000045(n) - A082116(n))/5. - R. J. Mathar, Jul 14 2012
|
|
MAPLE
|
seq(floor(fibonacci(n)/5), n=0..40); # Muniru A Asiru, Oct 10 2018
|
|
MATHEMATICA
|
CoefficientList[Series[(x^5(1+x)(1-x+x^3-x^5+x^7))/((1-x-x^2)(1-x^5)(1-x^2+x^4-x^6+x^8)), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 09 2012 *)
LinearRecurrence[{1, 2, -1, -2, 2, 1, -3, -1, 3, 0, -2, 1, 2, -1, -1}, {0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 11, 17, 28, 46, 75}, 40] (* Harvey P. Dale, Mar 14 2016 *)
|
|
PROG
|
(Magma) [Floor(Fibonacci(n)/5): n in [0..40]]; // Vincenzo Librandi, Jul 09 2012
(PARI) vector(50, n, n--; fibonacci(n)\5) \\ G. C. Greubel, Oct 09 2018
|
|
CROSSREFS
|
Sequence in context: A210520 A018144 A115315 * A014217 A034297 A326495
Adjacent sequences: A004695 A004696 A004697 * A004699 A004700 A004701
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|