The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115315 a(n) = floor(L^3*{phi^(3*n-2), phi^(3*n-1), phi^(3*n-2) + phi^(3*n-1)}) where L = (1 + sqrt(5))/(2*sqrt(5)) and phi = (1 + sqrt(5))/2. 1
 0, 0, 1, 2, 4, 6, 11, 17, 28, 46, 75, 121, 197, 319, 516, 836, 1353, 2189, 3542, 5731, 9273, 15004, 24278, 39283, 63562, 102845, 166408, 269253, 435661, 704915, 1140577, 1845492, 2986070, 4831563, 7817633, 12649197, 20466831, 33116028 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is the greatest multiple of L^3*phi^(3*n-2), L^3*phi^(3*n-1), and L^3*(phi^(3*n-2) + phi^(3*n-1)), where L = (1+sqrt(5))/(2*sqrt(5)) and phi = (1+sqrt(5))/2. - G. C. Greubel, May 15 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA Empirical g.f.: x^2*(x^8-2*x^6+x^5+2*x^4-x^3-x^2+1) / ((x-1)*(x+1)*(x^2+x-1)*(x^4-x^3+x^2-x+1)*(x^8-x^6+x^4-x^2+1)). - Colin Barker, Mar 15 2013 MATHEMATICA L:= GoldenRatio/Sqrt[5]; Phi:= GoldenRatio; f[n_]:= Floor[L^3*{Phi^(3*n-2), Phi^(3*n-1), Phi^(3*n-2) +Phi^(3*n-1)}]; Flatten[Table[f[n], {n, 1, 25}]] CROSSREFS Cf. A000045. Sequence in context: A222047 A210520 A018144 * A004698 A014217 A034297 Adjacent sequences: A115312 A115313 A115314 * A115316 A115317 A115318 KEYWORD nonn,less AUTHOR Roger L. Bagula, Mar 06 2006 EXTENSIONS Edited by G. C. Greubel, May 15 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 23:09 EDT 2023. Contains 361454 sequences. (Running on oeis4.)