login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115315
a(n) = floor(L^3*{phi^(3*n-2), phi^(3*n-1), phi^(3*n-2) + phi^(3*n-1)}) where L = (1 + sqrt(5))/(2*sqrt(5)) and phi = (1 + sqrt(5))/2.
1
0, 0, 1, 2, 4, 6, 11, 17, 28, 46, 75, 121, 197, 319, 516, 836, 1353, 2189, 3542, 5731, 9273, 15004, 24278, 39283, 63562, 102845, 166408, 269253, 435661, 704915, 1140577, 1845492, 2986070, 4831563, 7817633, 12649197, 20466831, 33116028
OFFSET
0,4
COMMENTS
a(n) is the greatest multiple of L^3*phi^(3*n-2), L^3*phi^(3*n-1), and L^3*(phi^(3*n-2) + phi^(3*n-1)), where L = (1+sqrt(5))/(2*sqrt(5)) and phi = (1+sqrt(5))/2. - G. C. Greubel, May 15 2019
LINKS
FORMULA
Empirical g.f.: x^2*(x^8-2*x^6+x^5+2*x^4-x^3-x^2+1) / ((x-1)*(x+1)*(x^2+x-1)*(x^4-x^3+x^2-x+1)*(x^8-x^6+x^4-x^2+1)). - Colin Barker, Mar 15 2013
MATHEMATICA
L:= GoldenRatio/Sqrt[5]; Phi:= GoldenRatio;
f[n_]:= Floor[L^3*{Phi^(3*n-2), Phi^(3*n-1), Phi^(3*n-2) +Phi^(3*n-1)}];
Flatten[Table[f[n], {n, 1, 25}]]
CROSSREFS
Cf. A000045.
Sequence in context: A222047 A210520 A018144 * A004698 A014217 A034297
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Mar 06 2006
EXTENSIONS
Edited by G. C. Greubel, May 15 2019
STATUS
approved