login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(L^3*{phi^(3*n-2), phi^(3*n-1), phi^(3*n-2) + phi^(3*n-1)}) where L = (1 + sqrt(5))/(2*sqrt(5)) and phi = (1 + sqrt(5))/2.
1

%I #12 May 15 2019 20:32:53

%S 0,0,1,2,4,6,11,17,28,46,75,121,197,319,516,836,1353,2189,3542,5731,

%T 9273,15004,24278,39283,63562,102845,166408,269253,435661,704915,

%U 1140577,1845492,2986070,4831563,7817633,12649197,20466831,33116028

%N a(n) = floor(L^3*{phi^(3*n-2), phi^(3*n-1), phi^(3*n-2) + phi^(3*n-1)}) where L = (1 + sqrt(5))/(2*sqrt(5)) and phi = (1 + sqrt(5))/2.

%C a(n) is the greatest multiple of L^3*phi^(3*n-2), L^3*phi^(3*n-1), and L^3*(phi^(3*n-2) + phi^(3*n-1)), where L = (1+sqrt(5))/(2*sqrt(5)) and phi = (1+sqrt(5))/2. - _G. C. Greubel_, May 15 2019

%H G. C. Greubel, <a href="/A115315/b115315.txt">Table of n, a(n) for n = 0..1000</a>

%F Empirical g.f.: x^2*(x^8-2*x^6+x^5+2*x^4-x^3-x^2+1) / ((x-1)*(x+1)*(x^2+x-1)*(x^4-x^3+x^2-x+1)*(x^8-x^6+x^4-x^2+1)). - _Colin Barker_, Mar 15 2013

%t L:= GoldenRatio/Sqrt[5]; Phi:= GoldenRatio;

%t f[n_]:= Floor[L^3*{Phi^(3*n-2), Phi^(3*n-1), Phi^(3*n-2) +Phi^(3*n-1)}];

%t Flatten[Table[f[n], {n, 1, 25}]]

%Y Cf. A000045.

%K nonn,less

%O 0,4

%A _Roger L. Bagula_, Mar 06 2006

%E Edited by _G. C. Greubel_, May 15 2019