OFFSET
1,1
COMMENTS
Here Lucas is: Lucas(1)=1, Lucas(2)=3 and, for n>2, Lucas(n) = Lucas(n-1) + Lucas(n-2). See A000032.
a(n) is prime for n = 1, 4, 9, 10, 16, 21, 22, 28, 33, 34, 40, 46, 52, 58, 64, 70, 76, 81, 82, 88, 93, 94, ... - Vincenzo Librandi, Dec 24 2015
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
a(15) = 21 = 3*7 since F(15) - 1 = 3*7*29 and L(15) + 1 = 3*5*7*13.
MATHEMATICA
lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]+1, Fibonacci[i]-1], {i, 60}]
Module[{nn=60, l, f}, l=LucasL[Range[nn]]+1; f=Fibonacci[Range[nn]]-1; GCD@@@ Thread[ {l, f}]] (* Harvey P. Dale, Apr 29 2020 *)
PROG
(Magma) [Gcd(Lucas(n)+1, Fibonacci(n)-1): n in [1..60]]; // Vincenzo Librandi, Dec 24 2015
(PARI) a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)+1, fibonacci(n)-1); \\ Altug Alkan, Dec 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Resta, Jan 20 2006
STATUS
approved