login
A004699
a(n) = floor(Fibonacci(n)/6).
3
0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 9, 14, 24, 38, 62, 101, 164, 266, 430, 696, 1127, 1824, 2951, 4776, 7728, 12504, 20232, 32736, 52968, 85704, 138673, 224378, 363051, 587429, 950481, 1537910, 2488392, 4026302, 6514694, 10540997, 17055692, 27596690, 44652382
OFFSET
0,8
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1).
FORMULA
G.f.: x^6*(1 + x + x^4 + x^6 + x^9 + x^10 + x^11 + x^14 + x^15 + x^17 + x^18)/((1 - x - x^2)*(1 - x^24)). [Corrected by G. C. Greubel, May 21 2019]
a(n) = (A000045(n) - A082117(n))/6. - R. J. Mathar, Jul 14 2012
MAPLE
seq(floor(combinat[fibonacci](n)/6), n=0..40); # Muniru A Asiru, Oct 10 2018
MATHEMATICA
Table[Floor[Fibonacci[n]/6], {n, 0, 50}] (* Vincenzo Librandi, Jul 10 2012 *)
CoefficientList[Series[x^6 (1 + x + x^4 + x^6 + x^9 + x^10 + x^11 + x^14 + x^15 + x^17 + x^18)/((1 - x - x^2) (1 - x^24)), {x, 0, 50}], x] (* Stefano Spezia, Oct 11 2018 - corrected by G. C. Greubel, May 21 2019 *)
PROG
(Magma) [Floor(Fibonacci(n)/6): n in [0..40]]; // Vincenzo Librandi, Jul 10 2012
(PARI) vector(50, n, n--; fibonacci(n)\6) \\ G. C. Greubel, Oct 09 2018
(Sage) [floor(fibonacci(n)/6) for n in (0..40)] # G. C. Greubel, May 21 2019
CROSSREFS
Cf. A000045.
Sequence in context: A251572 A173714 A026746 * A245800 A291896 A018155
KEYWORD
nonn,easy
STATUS
approved