login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004701
Expansion of e.g.f. 1/(4 - exp(x) - exp(2*x) - exp(3*x)).
6
1, 6, 86, 1836, 52250, 1858716, 79345346, 3951633636, 224917803770, 14402023566156, 1024662142371506, 80191908540219636, 6846505625682597290, 633241684193651067996, 63074628985206471485666, 6731364953866743063784836
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (1 + 2^k + 3^k) * a(n-k). - Ilya Gutkovskiy, Jan 15 2020
MAPLE
seq(coeff(series(factorial(n)*(4-exp(x)-exp(2*x)-exp(3*x))^(-1), x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 10 2018
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(4-Exp[x]-Exp[2*x]-Exp[3*x]), {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Jun 14 2012 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(4-sum(k=1, 3, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(4-Exp(x)-Exp(2*x)-Exp(3*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
CROSSREFS
Column k=3 of A320253.
Sequence in context: A155654 A231165 A091881 * A177570 A343636 A369624
KEYWORD
nonn
STATUS
approved