login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004703
Expansion of e.g.f. 1/(6-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)).
4
1, 15, 505, 25425, 1706629, 143195025, 14417768365, 1693616001225, 227365098508549, 34338804652192545, 5762408433135346525, 1063691250037869293625, 214198140845740727508469, 46728077502266943919186065
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (1 + 2^k + ... + 5^k) * a(n-k). - Ilya Gutkovskiy, Jan 15 2020
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(6-Exp[x]-Exp[2*x]-Exp[3*x] -Exp[4*x]-Exp[5*x]), {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Jun 14 2012 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(6-sum(k=1, 5, exp(k*x))))) \\ G. C. Greubel, Oct 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(6-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 09 2018
CROSSREFS
Column k=5 of A320253.
Sequence in context: A219057 A203525 A249962 * A218188 A218365 A203326
KEYWORD
nonn
STATUS
approved